Hubbard Model Calculations for Zinc Oxide Semiconductor


  • Aqeel Ali university of basrah



Hubbard model, GGA-U, ZnO, DFT, Band structure


To investigate the effects of Hubbard on-site Coulombic correction on the structural and electronical characteristics of wurtzite zinc oxide, first-principles calculations using density functional theory (DFT) were carried out. Because of the changes in structural characteristics brought about by the correction of hybridization between Zn 3d and O 2p states, suitable Hubbard terms need to be constructed before one can make an accurate forecast of the properties of ZnO. The computations were carried out by applying Hubbard corrections Ud to Zn 3d states and Up to O 2p states. These adjustments were based on the Wu-Cohen functional. When the Hubbard corrections Ud and Up were introduced to the calculation, the lattice parameters were more comparable to the experimental data and were found to be accurately predicted. The combination of the correction terms Ud and Up was successful in improving the underestimated bandgap of the wurtzite ZnO, which may have solved the difficulties that are associated with the traditional DFT. There is a strong agreement between the experimental bandgap and the best Hubbard parameters that were discovered for GGA-WC+U. These parameters were found to be Ud = 8 eV and Up = 8 eV.



N. Hamzah, M. H. Samat, N. A. Johari, A. F. A. Faizal, O. H. Hassan, A. M. M. Ali, R. Zakaria, N. H. Hussin, M. Z. A. Yahya and M. F. M. Taib “First principle LDA+U and GGA+U calculations on structural and electronic properties of wurtzite ZnO” Solid State Science and Technology, Vol. 30, No. 1 & 2, pp. 20-36, 2022.

B. Mehmood, M. I. Khan, M. Iqbal, A. Mahmood and W. Al-Masry “Structural and optical properties of Ti and Cu co-doped ZnO thin films for photovoltaic applications of dye sensitized solar cells” International Journal of Energy Research. Vol. 45, No. 2, 2445, 2021.

E. Cerrato, C. Gionco, M. C. Paganini and E. Giamello “Photoactivity properties of ZnO doped with cerium ions: an EPR study” Journal of Physics: Condensed Matter, Vol. 29, No. 44, 444001, 2017.

K. Harun, N. A. Salleh, B. Deghfel, M. K. Yaakob and A. A. Mohamad “DFT + U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: A review” Results in Physics, Vol. 16, 102829, 2020.

Ü. Özgür, Y. I. Alivov, C. L. A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho and H. Morkoç “A comprehensive review of ZnO materials and devices” JOURNAL OF APPLIED PHYSICS, Vol. 98, 041301, 2005.

A. A. Mohamad, M. S. Hassan, M. K. Yaakob, M. F. M. Taib, F. W. Badrudin and O. H. Hassan “First-principles calculation on electronic properties of zinc oxide by zinc–air system” Journal of King Saud University - Engineering Science, Vol. 29, pp. 278–83, 2017.

G.Y. Yao, G.H. Fann, F. Zhao, J.H. Ma, J. Chen, S.W. Zheng, S.M. Zeng, L.F He and T. Zhang “In assisted realization of p-type C-doped ZnO: a first-principles study” Physica B, Vol. 407, pp. 3539–3542, 2012.

K. Harun, M. K. Yaakob, M. F. M Taib, B. Sahraoui, Z. Ahmad and A. A. Mohamad “Efficient diagnostics of the electronic and optical properties of defective ZnO nanoparticles synthesized using the sol–gel method: experimental and theoretical studies” Material Research Express, Vol. 4, 085908, 2017.

P. Schröer, P. Krüger and J. Pollmann “First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS” Physical Review B, Vol. 47, 6971, 1993.

V. Ivády, K. Szasz, A. L. Falk, P. V. Klimov, D. J. Christle, E. Janzén, I. Abrikosov, D. D. Awschalom and A. Gali “Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide” Physical Review B, Vol. 92, 115206, 2015.

Z. Wu and R. E. Cohen “A More Accurate Generalized Gradient Approximation for Solids” Physical Review B, Vol. 73, 235116, 2006.

Y. S. Lee, Y. C. Peng, J. H. Lu, Y. R. Zhu and H. C. Wu “Electronic and optical properties of Ga-doped ZnO” Thin Solid Films, Vol. 570, Part B, pp. 464-470, 2014.

G. Shao “Red Shift in Manganese- and Iron-Doped TiO2: A DFT+U Analysis” Journal of physical chemistry C, Vol. 113, No. 16, pp. 6800-6808, 2009.

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, “First principles methods using CASTEP” Zeitschrift für kristallographie-crystalline materials, Vol. 220, No. 5-6, pp. 567-570, 2005.

Z. G. Wu and R. E. Cohen “More accurate generalized gradient approximation for solids” Physical Review B, Vol. 73, 235116, 2006.

Q. Liu and Z. Liu “First-principles generalized gradient approximation + U study of cubic CuAl2O4” Physical Review B, Vol. 78, 197102, 2008.

S. Desgreniers “High-density phases of ZnO: Structural and compressive parameters” Physical Review B, Vol. 58, 14102, 1998.

N. Hamzah, M. H. Samat, N. A. Johari, A. F. A. Faizal, O. H. Hassan, A. M. M. Ali, R. Zakaria, N. H. Hussin, M. Z. A. Yahya and M. F. M. Taib “First-Principle LDA+U and GGA+U Calculations on Structural and Electronic Properties of Wurtzite ZnO” Solid State Science and Technology, Vol. 30, No 1 & 2, pp. 20-36, 2022.

M. K. Yaakob, N. H. Hussin, M. F. M. Taib, T. I. T. Kudin, O. H. Hassan, A. M. M. Ali and M. Z. A. Yahya “First Principles LDA+U Calculations for ZnO Materials” Integrated Ferroelectrics: An International Journal, Vol. 155, No. 1, pp. 15-22, 2014.








How to Cite

Hubbard Model Calculations for Zinc Oxide Semiconductor. (2023). University of Thi-Qar Journal of Science, 10(1), 101-106.