A study on two dimensional (2D) piezoelectric semiconductor materials: a review

Authors

  • MICHAEL GYAN Departmentof Physics Education, University of Education, Winneba

DOI:

https://doi.org/10.32792/utq/utjsci/v12i1.1329

Abstract

 This study explores the field of two-dimensional (2D) piezoelectric semiconductor materials, offering an in-depth analysis of their distinctive properties, synthesis techniques, and practical applications. Piezoelectricity, the generation of electric charge in response to mechanical stress is well-documented in bulk materials but has recently gained renewed attention with the development of 2D materials. These semiconductors exhibit unique characteristics, including exceptional mechanical flexibility, tunable electrical properties, and nanoscale control, which position them as promising candidates for advanced technologies. The paper examines the principles and mathematical models governing piezoelectric behavior, focusing on the distinctions between in-plane and out-of-plane effects in 2D systems. It further evaluates their potential applications in areas such as sensors, energy harvesting devices, and nanoelectronics. By synthesizing recent advancements, this study provides critical insights into the opportunities and challenges within this dynamic field, paving the way for the design of innovative devices and technologies.

References

R. Verma, A. Chauhan, R. Kalia, R. Jasrotia, M. Sharma, and R. Kumar, "A comprehensive study on piezo-phototronic effect for increasing efficiency of solar cells: A review," Optics & Laser Technology, vol. 149, p. 107779, 2022/05/01/ 2022, doi: https://doi.org/10.1016/j.optlastec.2021.107779.

A. S. Gadtya and S. Moharana, "Electrical, Plasmonic, and Optical Properties of 2D Nanomaterials," 2D Nanomaterials: Synthesis, Properties and Applications, pp. 73-101, 2024.

A. Verma and B. C. Yadav, "Comprehensive review on two dimensional nanomaterials for optical biosensors: Present progress and outlook," Sustainable Materials and Technologies, p. e00900, 2024.

S. Bertolazzi, J. Brivio, and A. Kis, "Stretching and Breaking of Ultrathin MoS2," ACS Nano, vol. 5, no. 12, pp. 9703-9709, 2011/12/27 2011, doi: 10.1021/nn203879f.

A. Kumar and R. S. Rai, "Electrical, Mechanical, and Thermal Properties of Two‐Dimensional Nanomaterials," Two‐Dimensional Nanomaterials‐Based Polymer Nanocomposites: Processing, Properties and Applications, pp. 195-230, 2024.

G. Michael et al., "High-performance piezo-phototronic multijunction solar cells based on single-type two-dimensional materials," vol. 76, p. 105091, 2020.

M. B. Ghasemian, T. Daeneke, Z. Shahrbabaki, J. Yang, and K. Kalantar-Zadeh, "Peculiar piezoelectricity of atomically thin planar structures," Nanoscale, vol. 12, no. 5, pp. 2875-2901, 2020.

Z. Yao, J. Deng, and L. Li, "Piezoelectric performance regulation from 2D materials to devices," Matter, 2024.

J. Li, X. Li, and H. Zhu, "Symmetry engineering in low-dimensional materials," Materials Today, 2024.

C. Deng et al., "Reporting Excellent Transverse Piezoelectric and Electro‐Optic Effects in Transparent Rhombohedral PMN‐PT Single Crystal by Engineered Domains," vol. 33, no. 43, p. 2103013, 2021.

P. Pulpan, J. Erhart, and O. Štípek, "Analytical Modeling of Piezoelectric Transformers," Ferroelectrics, vol. 351, no. 1, pp. 204-215, 2007/06/08 2007, doi: 10.1080/00150190701354299.

C. Nadal and F. Pigache, "Multimodal electromechanical model of piezoelectric transformers by Hamilton's principle," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 11, pp. 2530-2543, 2009, doi: 10.1109/TUFFC.2009.1340.

O. Younas, P. Li, and Y. Wen, "An efficient self-powered piezoelectric energy extraction scheme with cascaded-gyrators-based transformer," Microelectronics Journal, p. 106254, 2024.

W. Ding et al., Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. 2017, p. 14956.

K.-A. N. Duerloo, M. T. Ong, and E. J. Reed, "Intrinsic Piezoelectricity in Two-Dimensional Materials," The Journal of Physical Chemistry Letters, vol. 3, no. 19, pp. 2871-2876, 2012/10/04 2012, doi: 10.1021/jz3012436.

F. Liu et al., "Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes," Nature communications, vol. 7, pp. 12357-12357, 2016, doi: 10.1038/ncomms12357.

R. Fei, W. Kang, and L. Yang, Ferroelectricity and Phase Transitions in Monolayer Group-IV Monochalcogenides. 2016.

R. Fei, W. Li, J. Li, and L. Yang, "Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS," Applied Physics Letters, vol. 107, no. 17, 2015, doi: 10.1063/1.4934750.

R. Gao and Y. Gao, "Piezoelectricity in two-dimensional group III–V buckled honeycomb monolayers," physica status solidi (RRL) – Rapid Research Letters, vol. 11, no. 3, p. 1600412, 2017, doi: doi:10.1002/pssr.201600412.

C. Sevik, D. Çakır, O. Gülseren, and F. M. Peeters, "Peculiar Piezoelectric Properties of Soft Two-Dimensional Materials," The Journal of Physical Chemistry C, vol. 120, no. 26, pp. 13948-13953, 2016, doi: 10.1021/acs.jpcc.6b03543.

M. N. Blonsky, H. L. Zhuang, A. K. Singh, and R. G. Hennig, "Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials," ACS Nano, vol. 9, no. 10, pp. 9885-9891, 2015/10/27 2015, doi: 10.1021/acsnano.5b03394.

T. Hu and J. Dong, "Two new phases of monolayer group-IV monochalcogenides and their piezoelectric properties," Physical Chemistry Chemical Physics, 10.1039/C6CP06734D vol. 18, no. 47, pp. 32514-32520, 2016, doi: 10.1039/C6CP06734D.

K. H. Michel, C. Sevik, and F. M Peeters, Piezoelectricity in two-dimensional materials: Comparative study between lattice dynamics and ab initio calculations. 2017.

H.-N. Zhang et al., "Intrinsic Coupling between Piezoelectric and Electronic Transport Properties in Janus γ-GeSnXO (X= S, Se) Monolayers with Vertical Piezoelectricity," ACS Applied Nano Materials, vol. 7, no. 8, pp. 8969-8977, 2024.

K. B. Ibrahim, T. A. Shifa, S. Zorzi, M. G. Sendeku, E. Moretti, and A. Vomiero, "Emerging 2D materials beyond mxenes and TMDs: Transition metal carbo-chalcogenides," Progress in Materials Science, p. 101287, 2024.

H. Sahin et al., Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. 2009, p. 155453.

A. K. Bhojani, H. L. Kagdada, and D. K. Singh, "Ultrahigh power factor and excellent solar efficiency in two-dimensional hexagonal group-IV–V nanomaterials," Journal of Applied Physics, vol. 135, no. 9, 2024.

K. H. Michel and B. Verberck, Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride. 2009.

H. Rahman, G. K. Sharma, and D. Kaur, "Fabrication of flexible substrate with partially embedded back-contacts for piezoelectric ZnO-based arms movement sensors," IEEE Sensors Journal, 2023.

Y. Cui, T. Wang, D. Hu, Z. Wang, J. Hong, and X. Wang, "Piezoelectricity in NbOI2 for piezotronics and nanogenerators," npj 2D Materials and Applications, vol. 8, no. 1, p. 62, 2024/09/16 2024, doi: 10.1038/s41699-024-00498-1.

S. H. Choi, Y. Kim, I. Jeon, and H. Kim, "Heterogeneous Integration of Wide Bandgap Semiconductors and 2D Materials: Processes, Applications, and Perspectives," Advanced Materials, vol. n/a, no. n/a, p. 2411108, 2024/10/19 2024, doi: https://doi.org/10.1002/adma.202411108.

X. Wang, G. Li, X. Wang, W. Ju, and X. Li, "Enhanced piezoelectricity induced by transition metal atoms adsorption on monolayer and bilayer MoS2," Physica E: Low-dimensional Systems and Nanostructures, vol. 166, p. 116148, 2025/01/01/ 2025, doi: https://doi.org/10.1016/j.physe.2024.116148.

A. Li, J. Yang, Y. He, J. Wen, and X. Jiang, "Advancing piezoelectric 2D nanomaterials for applications in drug delivery systems and therapeutic approaches," Nanoscale Horizons, vol. 9, no. 3, pp. 365-383, 2024.

G. Hu, F. Huang, and W. Huang, "Layer engineering piezotronic effect in two-dimensional homojunction transistors," Nano Energy, vol. 117, p. 108880, 2023/12/01/ 2023, doi: https://doi.org/10.1016/j.nanoen.2023.108880.

S. Yadav, B. Kumar, M. Kumar, Y. S. Sharma, and S. Kaushik, "Environmental resilience with 2D materials: A futuristic perspective," Environmental Functional Materials, vol. 2, no. 3, pp. 228-242, 2023/12/01/ 2023, doi: https://doi.org/10.1016/j.efmat.2024.04.001.

A. Corletto et al., "Energy Interplay in Materials: Unlocking Next-Generation Synchronous Multisource Energy Conversion with Layered 2D Crystals," Advanced Materials, vol. 34, no. 36, p. 2203849, 2022, doi: https://doi.org/10.1002/adma.202203849.

C. N. R. Rao, H. S. S. Ramakrishna Matte, and U. Maitra, "Graphene Analogues of Inorganic Layered Materials," Angewandte Chemie International Edition, vol. 52, no. 50, pp. 13162-13185, 2013, doi: doi:10.1002/anie.201301548.

M. Xu, T. Liang, M. Shi, and H. Chen, "Graphene-Like Two-Dimensional Materials," Chemical Reviews, vol. 113, no. 5, pp. 3766-3798, 2013/05/08 2013, doi: 10.1021/cr300263a.

Y. Lin and J. W. Connell, "Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene," Nanoscale, 10.1039/C2NR32201C vol. 4, no. 22, pp. 6908-6939, 2012, doi: 10.1039/C2NR32201C.

K. J. Koski and Y. Cui, "The New Skinny in Two-Dimensional Nanomaterials," ACS Nano, vol. 7, no. 5, pp. 3739-3743, 2013/05/28 2013, doi: 10.1021/nn4022422.

M. Zhao, Y. Pan, C. Fan, and G. Xu, "Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors," International Journal of Solids and Structures, vol. 94-95, pp. 50-59, 2016/09/01/ 2016, doi: https://doi.org/10.1016/j.ijsolstr.2016.05.009.

D. L. White, "Amplification of Ultrasonic Waves in Piezoelectric Semiconductors," Journal of Applied Physics, vol. 33, no. 8, pp. 2547-2554, 1962, doi: 10.1063/1.1729015.

A. R. Hutson and D. L. White, "Elastic Wave Propagation in Piezoelectric Semiconductors," Journal of Applied Physics, vol. 33, no. 1, pp. 40-47, 1962, doi: 10.1063/1.1728525.

X. Wang, J. Song, J. Liu, and Z. L. Wang, "Direct-Current Nanogenerator Driven by Ultrasonic Waves," Science, vol. 316, no. 5821, pp. 102-105, 2007, doi: 10.1126/science.1139366.

Z. L. Wang, "Nanopiezotronics," Advanced Materials, vol. 19, no. 6, pp. 889-892, 2007, doi: doi:10.1002/adma.200602918.

W. Wu et al., "Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics," Nature, vol. 514, p. 470, 10/15/online 2014, doi: 10.1038/nature13792.

H. Zhu et al., "Observation of piezoelectricity in free-standing monolayer MoS(2)," Nat Nanotechnol, vol. 10, no. 2, pp. 151-5, Feb 2015, doi: 10.1038/nnano.2014.309.

Y. Li et al., "Probing Symmetry Properties of Few-Layer MoS2 and h-BN by Optical Second-Harmonic Generation," Nano Letters, vol. 13, no. 7, pp. 3329-3333, 2013/07/10 2013, doi: 10.1021/nl401561r.

N. Tripathy and A. De Sarkar, "Insights into the origin of multiferroicity and large in-plane piezoelectricity in Al XY (X= S, Se; Y= Cl, Br, I) monolayers," Physical Review B, vol. 109, no. 12, p. 125414, 2024.

K. Zheng, T. Vegge, and I. E. Castelli, "Giant In-Plane Flexoelectricity and Radial Polarization in Janus IV–VI Monolayers and Nanotubes," ACS Applied Materials & Interfaces, vol. 16, no. 15, pp. 19369-19378, 2024.

W. Li and J. Li, "Piezoelectricity in two-dimensional group-III monochalcogenides," Nano Research, journal article vol. 8, no. 12, pp. 3796-3802, December 01 2015, doi: 10.1007/s12274-015-0878-8.

W. Gan, X. Ma, J. Liao, T. Xie, and N. Ma, "First-principles calculation of in-plane and out-of-plane piezoelectric properties of two-dimensional Janus MoSSiX 2 (X= N, P, As) monolayers," New Journal of Chemistry, vol. 48, no. 15, pp. 6780-6788, 2024.

Y. Zhou et al., "Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes," Nano Letters, vol. 17, no. 9, pp. 5508-5513, 2017/09/13 2017, doi: 10.1021/acs.nanolett.7b02198.

J. Mao, "Strain-modulated photoelectric and ferroelectric properties of 2D materials via patterned substrates," 2024.

J. Zhou et al., "Controlled Synthesis of High-Quality Monolayered α-In2Se3 via Physical Vapor Deposition," Nano Letters, vol. 15, no. 10, pp. 6400-6405, 2015/10/14 2015, doi: 10.1021/acs.nanolett.5b01590.

H. Zhu et al., "Observation of piezoelectricity in free-standing monolayer MoS2," Nature Nanotechnology, vol. 10, p. 151, 12/22/online 2014, doi: 10.1038/nnano.2014.309

https://www.nature.com/articles/nnano.2014.309#supplementary-information.

G. da Cunha Rodrigues, P. Zelenovskiy, K. Romanyuk, S. Luchkin, Y. Kopelevich, and A. Kholkin, Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. 2015, p. 7572.

A. V. Bune et al., "Two-dimensional ferroelectric films," Nature, vol. 391, p. 874, 02/26/online 1998, doi: 10.1038/36069.

L. C. Gomes, A. Carvalho, and A. H. Castro Neto, "Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV monochalcogenides," Physical Review B, vol. 92, no. 21, p. 214103, 12/08/ 2015, doi: 10.1103/PhysRevB.92.214103.

C. Cui, F. Xue, W.-J. Hu, and L.-J. Li, "Two-dimensional materials with piezoelectric and ferroelectric functionalities," npj 2D Materials and Applications, vol. 2, no. 1, p. 18, 2018/06/22 2018, doi: 10.1038/s41699-018-0063-5.

D. Zheng et al., "Research progress on two-dimensional indium selenide crystals and optoelectronic devices," Journal of Materials Chemistry A, 2024.

W. Feng et al., "Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In2Se3," Chemistry of Materials, vol. 28, no. 12, pp. 4278-4283, 2016/06/28 2016, doi: 10.1021/acs.chemmater.6b01073.

S. M. Yu, J. Hyoung Yoo, S. Patole, J. Lee, and J. W. Yoo, The Effect of Pressure and Growth Temperature on the Characteristics of Polycrystalline In2Se3 Films in Metal Organic Chemical Vapor Deposition. 2012.

Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, "Large-area vapor-phase growth and characterization of MoS(2) atomic layers on a SiO(2) substrate," (in eng), Small (Weinheim an der Bergstrasse, Germany), vol. 8, no. 7, pp. 966-71, Apr 10 2012, doi: 10.1002/smll.201102654.

L. Song et al., "Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers," Nano Letters, vol. 10, no. 8, pp. 3209-3215, 2010/08/11 2010, doi: 10.1021/nl1022139.

G. R. Whittell and I. Manners, "Advances with Ammonia-Borane: Improved Recycling and Use as a Precursor to Atomically Thin BN Films," Angewandte Chemie International Edition, vol. 50, no. 44, pp. 10288-10289, 2011, doi: doi:10.1002/anie.201103830.

Y. Shi et al., "Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition," Nano Letters, vol. 10, no. 10, pp. 4134-4139, 2010/10/13 2010, doi: 10.1021/nl1023707.

H. Jaehyun, L. Jun-Young, K. Heemin, and Y. Jong-Souk, "Synthesis of wafer-scale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition," Nanotechnology, vol. 25, no. 14, p. 145604, 2014. [Online]. Available: http://stacks.iop.org/0957-4484/25/i=14/a=145604.

K. K. Kim et al., "Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition," Nano Letters, vol. 12, no. 1, pp. 161-166, 2012/01/11 2012, doi: 10.1021/nl203249a.

H. Zhou et al., "Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene," Nature Communications, Article vol. 4, p. 2096, 06/27/online 2013, doi: 10.1038/ncomms3096

https://www.nature.com/articles/ncomms3096#supplementary-information.

J. Zhang et al., "Scalable Growth of High-Quality Polycrystalline MoS2 Monolayers on SiO2 with Tunable Grain Sizes," ACS Nano, vol. 8, no. 6, pp. 6024-6030, 2014/06/24 2014, doi: 10.1021/nn5020819.

Y. Zhang et al., "Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary," ACS Nano, vol. 7, no. 10, pp. 8963-8971, 2013/10/22 2013, doi: 10.1021/nn403454e.

J.-K. Huang et al., "Large-Area Synthesis of Highly Crystalline WSe2 Monolayers and Device Applications," ACS Nano, vol. 8, no. 1, pp. 923-930, 2014/01/28 2014, doi: 10.1021/nn405719x.

X. Wang et al., "Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe2," ACS Nano, vol. 8, no. 5, pp. 5125-5131, 2014/05/27 2014, doi: 10.1021/nn501175k.

K. S. Novoselov et al., "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, no. 5696, pp. 666-669, 2004, doi: 10.1126/science.1102896.

K. S. Novoselov et al., "Two-dimensional atomic crystals," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, p. 10451, 2005, doi: 10.1073/pnas.0502848102.

Y. Zou et al., "A flexible self-arched biosensor based on combination of piezoelectric and triboelectric effects," vol. 20, p. 100699, 2020.

J. N. Coleman et al., "Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials," Science, vol. 331, no. 6017, pp. 568-571, 2011, doi: 10.1126/science.1194975.

Y. Jeong and P. Samorì, "Functionalized 2D transition metal dichalcogenide inks via liquid‐phase exfoliation for practical applications," Bulletin of the Korean Chemical Society, vol. 45, no. 2, pp. 110-124, 2024.

M. Zhao, C. Casiraghi, and K. Parvez, "Electrochemical exfoliation of 2D materials beyond graphene," Chemical Society Reviews, 2024.

X. Rocquefelte, F. Boucher, P. Gressier, G. Ouvrard, P. Blaha, and K. Schwarz, Mo cluster formation in the intercalation compound LiMoS_ {2}. 2000.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, "Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides," ACS Nano, vol. 8, no. 2, pp. 1102-1120, 2014/02/25 2014, doi: 10.1021/nn500064s.

J.-H. Lee et al., "Reliable Piezoelectricity in Bilayer WSe2 for Piezoelectric Nanogenerators," Advanced Materials, vol. 29, no. 29, p. 1606667, 2017, doi: doi:10.1002/adma.201606667.

D. B. Kim, J. Y. Kim, J. Han, and Y. S. Cho, "Strain engineering in power-generating and self-powered nanodevices," Nano Energy, p. 109551, 2024.

Z. L. Wang, "Progress in piezotronics and piezo-phototronics," (in eng), Adv Mater, vol. 24, no. 34, pp. 4632-46, Sep 4 2012, doi: 10.1002/adma.201104365.

W. Wu, Y. Wei, and Z. L. Wang, "Strain-gated piezotronic logic nanodevices," Adv Mater, vol. 22, no. 42, pp. 4711-5, Nov 9 2010, doi: 10.1002/adma.201001925.

W. Wu et al., "Piezophototronic Effect in Single-Atomic-Layer MoS2 for Strain-Gated Flexible Optoelectronics," Advanced Materials, vol. 28, no. 38, pp. 8463-8468, 2016, doi: doi:10.1002/adma.201602854.

D.-H. Wei et al., "Insight into vertical piezoelectric characteristics regulated thermal transport in van der Waals two-dimensional materials," Rare Metals, vol. 43, no. 2, pp. 770-779, 2024.

V. Antwi, M. Gyan, D. Appiah, I. K. Acquah, F. A. Wuver, and C. Jebuni-Adanu, "Theoretical study of the strong piezo-phototronic effect in 2D monochalcogenides for multi-junction solar cells," Physica Scripta, vol. 99, no. 11, p. 115906, 2024.

M.-M. Yang, Z.-D. Luo, Z. Mi, J. Zhao, and M. J. N. Alexe, "Piezoelectric and pyroelectric effects induced by interface polar symmetry," vol. 584, no. 7821, pp. 377-381, 2020.

Published

2025-06-05

Issue

Section

Review

Categories

How to Cite

GYAN, M. (2025). A study on two dimensional (2D) piezoelectric semiconductor materials: a review. University of Thi-Qar Journal of Science, 12(1), 94-104. https://doi.org/10.32792/utq/utjsci/v12i1.1329