High-Performance Thermoelectricity in Ferrocene Molecular Wires

Authors

  • Rasha Talal Jasem Department of Physics, College of Science, University of Thi-Qar
  • Mohammed Deia Noori Department of Physics, College of Science, University of Thi-Qar

DOI:

https://doi.org/10.32792/utq/utjsci/v12i1.1281

Abstract

The transport characteristics of the ferrocene trimer molecule and its reaction to temperature changes were investigated theoretically Here, we have conducted a theoretical comparison of the thermoelectric and electrical characteristics of four distinct ferrocene trimer topologies. Our findings show that the bonding type and connectivity between ferrocene trimer units significantly affect  the regulation of quantum interference (QI) and the enhancement of thermoelectric characteristics indicating that these structures are excellent candidates to serve as materials for numerous thermoelectric applications and as thermoelectric enhancers such as Cooling/heating, power generation, and heat flux sensors.

References

‎ [1]‎ J. Peng, B. Zhang, B. Yin, D. Liu, Y. Qiu, and H. ‎Zhang, "Optimizing thermoelectric performance ‎in molecular junction: The role of van der Waals ‎interface coupling with boron-doped ‎electrodes," Results in Physics, p. 107832, 2024.‎

‎ [2]‎ R. Toscano-Negrette et al., "Theoretical study of ‎the thermoelectric properties through a single-‎molecule junction of Zinc Porphyrin," Physica ‎E: Low-dimensional Systems and ‎Nanostructures, vol. 161, p. 115970, 2024.‎

‎ [3]‎ R. H. Sakban, M. D. Noori, and S. M. ‎Abdulalmohsin, "Radical Enhancement Electric ‎and Thermoelectric Efficiency of Graphene ‎Nano constrictions," Solid State Technology, ‎vol. 63, no. 1, pp. 1788-1793, 2020.‎

‎ [4] ‎ ‎ F. N. Ajeel, A. B. Ahmed, and A. M. Khudhair, ‎‎"Enhanced thermoelectric figure of merit in ‎graphene nanoribbons by creating a distortion ‎and transition-metal doping," Nano-Structures & ‎Nano-Objects, vol. 38, p. 101164, 2024.‎

‎ [5] A. A. K. Al-mebir, M. D. Noori, and B. B. Kadhim, ‎‎"Tuning the Electrical and Thermoelectric ‎Properties of Phthalocyanine and Metallo-‎Phthalocyanine Molecular Junction," in Journal ‎of Physics: Conference Series, 2021, vol. 1999, ‎no. 1: IOP Publishing, p. 012036. ‎

‎ [6]‎ ‎ D. Stefani et al., "Large conductance variations ‎in a mechanosensitive single-molecule ‎junction," Nano letters, vol. 18, no. 9, pp. 5981-‎‎5988, 2018.‎

‎ [7]‎ K. Nakada, M. Fujita, G. Dresselhaus, and M. S. ‎Dresselhaus, "Edge state in graphene ribbons: ‎Nanometer size effect and edge shape ‎dependence," Physical Review B, vol. 54, no. 24, ‎p. 17954, 1996.‎

‎ [8] M. D. Noori, Quantum Theory of Electron ‎Transport Through Photo-Synthetic Porphyrins. ‎Lancaster University (United Kingdom), 2017.‎

‎ [9] ‎ J. S. Junias and J. Clement, "Predictive analytics ‎of conductance and HOMO-LUMO gaps with ‎topological descriptors of porphyrin ‎nanosheets," Physica Scripta, vol. 99, no. 1, p. ‎‎015208, 2023.‎

‎ [10]‎ M. Noori et al., "Tuning the electrical ‎conductance of metalloporphyrin ‎supramolecular wires," Scientific reports, vol. 6, ‎no. 1, p. 37352, 2016.‎

‎ [11]‎ T. J. Seebeck, Magnetische polarisation der ‎metalle und erze durch temperatur-differenz ‎‎(no. 70). W. Engelmann, 1895.‎

‎ [12]‎ T. A. Hussein and M. D. Noori, "Investigation ‎Electrical and Thermoelectrical properties of ‎Ferrocene in staggered and eclipsed ‎conformations," in Journal of Physics: ‎Conference Series, 2021, vol. 1973, no. 1: IOP ‎Publishing, p. 012055. ‎

‎ [13]‎ D. Preesam, M. Noori, and H. Moghaddam, "The ‎Effect of Linker Group on Thermoelectric ‎Properties of Dimer Zinc Porphyrin-Based ‎Molecular Junctions," University of Thi-Qar ‎Journal of Science, vol. 10, no. 2, pp. 177-180, ‎‎2023. ‎

‎ [14]‎ M. D. Noori and A. A. Al-Jobory, "Tuning the ‎Thermoelectric Properties of Ferrocene ‎Molecular Junctions," in IOP Conference Series: ‎Materials Science and Engineering, 2018, vol. ‎‎454, no. 1: IOP Publishing, p. 012143.‎

‎ [15]‎ J. C. Scott, "Metal–organic interface and charge ‎injection in organic electronic devices," Journal ‎of Vacuum Science & Technology A: Vacuum, ‎Surfaces, and Films, vol. 21, no. 3, pp. 521-531, ‎‎2003.‎

‎ [16]‎ N. Darwish, I. Díez-Pérez, S. Guo, N. Tao, J. J. ‎Gooding, and M. N. Paddon-Row, "Single ‎molecular switches: electrochemical gating of a ‎single anthraquinone-based norbornylogous ‎bridge molecule," The Journal of Physical ‎Chemistry C, vol. 116, no. 39, pp. 21093-21097, ‎‎2012.‎

‎ [17]‎ M. A. Rampi and G. M. Whitesides, "A versatile ‎experimental approach for understanding ‎electron transport through organic materials," ‎Chemical Physics, vol. 281, no. 2-3, pp. 373-‎‎391, 2002.‎

‎ [18]‎ G. Bhatt, A. Ghatak, and R. Murugavel, ‎‎"Futuristic storage devices: Single molecular ‎magnets of rare earths versus spin crossover ‎systems of earth-abundant metals," Journal of ‎Chemical Sciences, vol. 135, no. 2, p. 40, 2023.‎

‎ [19]‎ J. Cirera and E. Ruiz, "Modeling Magnetic ‎Properties with Density Functional Theory‐‎Based Methods," Molecular Magnetic ‎Materials: Concepts and Applications, pp. 419-‎‎446, 2017.‎

‎ [20]‎ S. Sanvito, "Molecular spintronics," Chemical ‎Society Reviews, vol. 40, no. 6, pp. 3336-3355, ‎‎2011.‎

‎ [21]‎ M. Elbing et al., "A single-molecule diode," ‎Proceedings of the National Academy of ‎Sciences, vol. 102, no. 25, pp. 8815-8820, 2005.‎

‎ [22]‎ M. Josefsson et al., "A quantum-dot heat engine ‎operating close to the thermodynamic efficiency ‎limits," Nature nanotechnology, vol. 13, no. 10, ‎pp. 920-924, 2018.‎

‎ [23]‎ H. Sadeghi, S. Sangtarash, and C. J. Lambert, ‎‎"Oligoyne molecular junctions for efficient ‎room temperature thermoelectric power ‎generation," Nano letters, vol. 15, no. 11, pp. ‎‎7467-7472, 2015.‎

‎ [24]‎ A. A. Al-Jobory, Z. Y. Mijbil, and M. Noori, ‎‎"Tuning electrical conductance of molecular ‎junctions via multipath Ru-based metal complex ‎wire," Indian Journal of Physics, vol. 94, no. 8, ‎pp. 1189-1194, 2020.‎

‎ [25]‎ M. S. Abbasi et al., "Contemporary advances in ‎organic thermoelectric materials: Fundamentals, ‎properties, optimization strategies, and ‎applications," Renewable and Sustainable ‎Energy Reviews, vol. 200, p. 114579, 2024.‎

‎ [26] A. R. Lafta and M. D. Noori, "Thermoelectric ‎Performance of Metallophthalocyanine ‎Molecular Junctions with CIP and CPP ‎Configurations," Iraqi Journal of Applied ‎Physics, vol. 19, no. 4B, 2023‎‏.‏

‎ [27]‎ A. C. Aragonès et al., "Control over near-‎ballistic electron transport through formation of ‎parallel pathways in a single-molecule wire," ‎Journal of the American Chemical Society, vol. ‎‎141, no. 1, pp. 240-250, 2018‎‏.‏

‎ [28] M. D. Noori, "Electrical and thermoelectrical ‎properties investigation of oligomeric ferrocene: ‎Staircase versus flatcase," in AIP Conference ‎Proceedings, 2021, vol. 2404, no. 1: AIP ‎Publishing.‎

‎ [29] G. Nemnes and A. Nicolaev, "Transport in ‎ferrocene single molecules for terahertz ‎applications," Physical Chemistry Chemical ‎Physics, vol. 16, no. 34, pp. 18478-18482, 2014‎‏.‏

‎[‎‏30‏‎]‎ H. Mizuseki, R. V. Belosludov, T. Uehara, S. U. ‎Lee, and Y. Kawazoe, "Transport properties of ‎nanoscale materials for molecular wire ‎applications: A case study of ferrocene dimers," ‎Journal of the Korean Physical Society‏, ‏vol. 52, ‎no. 4 PART 1, pp. 1197-1201, 2008‎‏.‏

‎[30]‎‏ ‏ S. Yuan et al., "Theoretical studies of the spin-‎dependent electronic transport properties in ‎ethynyl-terminated ferrocene molecular ‎junctions," Micromachines, vol. 9, no. 3, p. 95, ‎‎2018‎‏.‏

‏[32]‏ M. C. Böhm, "Electron correlation in weakly ‎coupled transition metal dimers: ‎Bimetallocenylenes and bimetallocenes," ‎Theoretica chimica acta, vol. 60, pp. 233-268, ‎‎1981‎‏.‏

‏[33]‏ J.-C. Wu et al., "Manipulating spin transport via ‎vanadium− iron cyclopentadienyl multidecker ‎sandwich molecules," The Journal of Physical ‎Chemistry C, vol. 113, no. 18, pp. 7913-7916, ‎‎2009‎‏.‏

‎[34]‎ L. Zhou, S.-W. Yang, M.-F. Ng, M. B. Sullivan, ‎Tan, and L. Shen, "One-dimensional iron− ‎cyclopentadienyl sandwich molecular wire with ‎half metallic, negative differential resistance and ‎high-spin filter efficiency properties," Journal ‎of the American Chemical Society, vol. 130, no. ‎‎12, pp. 4023-4027, 2008‎‏.‏

‏[35]‏ Y. Matsuura, "Tunnel magnetoresistance of ‎ferrocene molecules," Chemical Physics Letters, ‎vol. 69‎‏2, ‏pp. 174-177, 2018‎‏.‏

‏[36]‏ M. E. Welker, "Ferrocenes as building blocks in ‎molecular rectifiers and diodes," Molecules, vol. ‎‎23, no. 7, p. 1551, 2018‎‏.‏

‎[37]‎ C. Lambert, "Basic concepts of quantum ‎interference and electron transport in single-‎molecule electronics," Chemical Society ‎Reviews, vol. 44, no. 4, pp. 875-888, 2015‎‏.‏

‏[38]‏ J. M. Soler et al., "The SIESTA method for ab ‎initio order-N materials simulation," Journal of ‎Physics: Condensed Matter, vol. 14, no. 11, p. ‎‎2745, 2002.‎

‏ [39]‏ J. P. Perdew, K. Burke, and M. Ernzerhof, ‎‎"Generalized gradient approximation made ‎simple," Physical review letters, vol. 77, no. 18, ‎p. 3865, 1996.‎

‎[40]‎ J. Ferrer et al., "GOLLUM: a next-generation ‎simulation tool for electron, thermal and spin ‎transport," New Journal of Physics, vol. 16, no. ‎‎9, p. 093029, 2014‎‏.‏

Downloads

Published

2025-06-08

Issue

Section

Articles

Categories

How to Cite

Rasha Talal Jasem, & Mohammed Deia Noori. (2025). High-Performance Thermoelectricity in Ferrocene Molecular Wires. University of Thi-Qar Journal of Science, 12(1), 7-11. https://doi.org/10.32792/utq/utjsci/v12i1.1281