Effectiveness of Application of TiO2 Nanoparticles in Removing of Heavy Metal Contaminants from Basrah River Water

Authors

  • Anwar A. Jumaa ‎ Department of Marine Chemistry, Marine Science Center, University of Basrah
  • Salwa A. Abduljaleel ‎ Department of Biology, Faculty of Science, University of Basrah, Basrah
  • Abdulzahra A.N. AlHello Department of Marine Chemistry, Marine Science Center, University of Basra
  • Zuhair A. Abdulnabi Department of Marine Chemistry, Marine Science Center, University of Basrah,

DOI:

https://doi.org/10.32792/utq/utjsci/v11i2.1224

Keywords:

Water treatment, heavy metal removal, titanium dioxide nanoparticles, metal oxides.

Abstract

In this study, we focused on the application of Titanium dioxide nanoparticles semiconductor oxides for the removal of heavy metals from Basrah wastewater. Commercial TiO2 was downscaled by ball milling , characterized and tested for heavy metals (Pb, Cd, Hg and Co) removals from the secondary channel of Basrah wastewater (SCBW).  Morphology characterization using FT-SEM images indicated that TiO2 particles are of mean grain size 98 nm,  Zeta potential measurements revealed the negative charge of the TiO2 particles, X-ray diffraction analysis confirmed anatase phase TiO2 particles ,  BET measurements exhibited the TiO2 is mesopores with a surface area of 12.65 m2/g , EDX spectrum indicated pure TiO2. The effect  of contact time, Temperature, and PH have been taken into account as a parameter to understand the adsorption Mechanism.  The best recorded removal percentage was about  ( 97 %) for Pb element after 120 minutes with temperature( T=40o ) in Al-Rebat station and reached    ( 100 %)  for PH=9. This study has shed light on the importance of TiO2 nanoparticles in removing heavy metals from Basrah river water, which resulted in significant decreases in the concentration of several heavy metals and other pollutants.

 

References

‎[1] K. R. B. Singh, P. R. Solanki, B.D. Malhotra, A. C. ‎Pandey, and R. P. Singh, “Nanomaterials in ‎Bionanotechnology”, CRC Press, First Published ‎‎2021.‎

‎[2] A. K. Das and M. Das,” An Introduction to ‎Nanomaterials and Nanoscience”, CBS Publishers ‎& Distributors Pvt Ltd, India (August 30, 2019).‎

‎[3] M. Benelmekki, “Nanomaterials”, Morgan & ‎Claypool Publishers, 2019.‎

‎[4] S. Homaeigohar,” { Water Treatment with New ‎Nanomaterials”, MPDI Water August 2020.‎

‎[5] O. Zaytseva, and G. Neumann, “Carbon ‎nanomaterials: Production, impact on plant ‎development, agricultural and environmental ‎applications”. Chem. Biol. Technol. Agric. 2016, 3, ‎‎17.‎

‎[6] V. Vishwakarma, “Recovery and recycle of ‎wastewater contaminated with heavy metals using ‎adsorbents incorporated from waste resources and ‎nanomaterials-A review”. Chemosphere, 273, ‎‎129677. 2021. ‎

‎[7] B. Sunandan, K. P. Samir, and D. Joydeep, ‎‎“Nanostructured Zinc Oxide for Water ‎Treatment”. Nanosci. Nanotechnol.-Asia, 2, 90–‎‎102. 2012.‎

‎[8] S. Mustapha, M.M. Ndamitso, A. S. Abdulkaree, J. O. ‎Tijani, D. T. Shuaib, A. O. Ajala, and A. K. ‎Mohammed, “Application of TiO2 and ZnO ‎nanoparticles immobilized on clay in wastewater ‎treatment: A review”. Appl. Water Sci., 10, 32. ‎‎2019.‎

‎[9] M. Marciniak, , J. Goscianska, , M. Frankowski, and ‎R. Pietrzak, “Optimal synthesis of oxidized ‎mesoporous carbons for the adsorption of heavy ‎metal ions”. J. Mol. Liq. 276, 630–637. 2019.‎

‎[10] U. Upadhyay, I. Sreedhar, S. A. Singh, C. M. Patel, ‎and K. L. Anitha, “Recent advances in heavy metal ‎removal by chitosan based adsorbents”. ‎Carbohydr. Polym. 251, 117000. 2021.‎

‎[11] M. I. A. Abdel Maksoud, et al. “Insight on water ‎remediation application using magnetic ‎nanomaterials and biosorbents”. Coord. Chem. ‎Rev. 403, 213096. 2020.‎

‎[12] M. S. El-Eskandarany, “Ball milling as a superior ‎nanotechnological fabrication’s tool, Mechanical ‎Alloying (Third Edition)”, William Andrew ‎Publishing, (2020).‎

‎[13] X. Chen and S. S. Mao, "Titanium dioxide ‎nanomaterials: synthesis, properties, ‎modifications and applications," Chemical ‎Reviews, vol. 107, no. 7, pp. 2891-2959, 2007.‎

‎[14] M. A. Morosanova, K. V. Chaikun, and E. I. ‎Morosanova, “Silica and Silica–Titania Xerogels ‎Doped with Iron(III) for Total Antioxidant ‎Capacity Determination”. Materials 2021, 14, ‎‎2019. ‎

‎[15] A. Hamisu, U. Gaya, and A. H. Abdullah, “A Novel ‎Poly (vinyl alcohol) Post-precipitation Template ‎Synthesis and Property Tuning of Photoactive ‎Mesoporous Nano-TiO2”. Phys. Chem. Res. ‎Volume 8, Issue 2 - Serial Number 26 June 2020‎

‎[16] Z. A. Abdulnabi, H. T. Abdulsahib, and F. A. J. Al-‎doghachi, “Extraction of Nanomaterial from Soot ‎Waste as Low Cost Adsorbent for Removal of ‎Some Carcinogenic Dyes from Aqueous Solution”, ‎Ind. J. Ecol .2022; 49 610-617. 2022.‎

‎[17] S. Ethaib, S. Al-Qutaifai, N. Al-Ansari, S. L. Zubaidi. ‎‎“Function of Nanomaterials in Removing Heavy ‎Metals for Water and Wastewater Remediation: A ‎Review”, Environments, 9(10), 123. 2022.‎

‎[18] L. Renugopal, K. W. Kow , P. L. Kiew, S. P. Yeap, H. ‎S. Chua, C. H. Chan, R. Yusoff. “Selective ‎adsorption of copper and cadmium ions using ‎nano-particles aligned in silica gel matrix”, J. AIP ‎Publshing, Volume 2124, Issue 1. 2019.‎

‎[19] A. A. Mizhir, A. A. Abdulwahid, H. S. Al-Lami. ‎‎“Adsorption of carcinogenic dye Congo red onto ‎prepared graphene oxide-based Composites”, Des. ‎Wat. Treat. 202: 381–395. 2020.‎

‎[20] Z. A. Abdulnabi, “Synthesis and Characterization ‎of some Selenazone Complexes and ‎Nanoadsorbent Surfaces from Industrial Waste for ‎Removing some Carcinogenic Dyes and Heavy ‎Metals from Water”, PhD. Thesis. University of ‎Basra, Iraq. 2021.‎

Downloads

Published

2024-12-31

Issue

Section

Articles

Categories

How to Cite

Anwar A. Jumaa ‎, , S. A. A. ‎, Abdulzahra A.N. AlHello, & A. Abdulnabi, Z. . (2024). Effectiveness of Application of TiO2 Nanoparticles in Removing of Heavy Metal Contaminants from Basrah River Water. University of Thi-Qar Journal of Science, 11(2), 206-210. https://doi.org/10.32792/utq/utjsci/v11i2.1224