Relationship between Uric Acid with Thyroid Disorders of Diabetic Patients in Iraq
DOI:
https://doi.org/10.32792/utq/utjsci/v11i2.1217Keywords:
Diabetes mellitus, Thyroid function test, Uric acid, Lipid profile, insulin resistance.Abstract
Uric acid is the product of purine metabolism. its raised can lead to complications associated with metabolic diseases. We seek to shed light on the association between thyroid disorders in diabetes and hyperuricemia. The aim of this study is to demonstrate the association of uric acid with diabetes and its chronic complications through aspects of pathogenesis and clinical research Anthropometric, clinical, and hormonal measurements. patients (140) were divided into three groups. Sixty T2DM with euthyroidism (G1), fifty T2DM with hypothyroidism (G2), and Thirty T2DM with hyperthyroidism (G3). A high significant correlation (P < 0.01, P= 1) between uric acid Vs. G1, G2, and G3 groups. Uric acid significantly differed at (P< 0.05) between (G1 Vs. G2), and (G1 Vs. G3) .A negative correlation between uric acid and thyroids hormones at G1, G2, and G3 groups. The study showed the effect of uric acid through the correlation coefficient for both clinical and hormonal indicators in diabetic patients with thyroid dysfunction.
Received: 2024-03-25
Revised: 2024-04-09
Accepted: 2024-04-14
References
[1] YS. Oh, GD. Bae, D.J. Baek, E.Y. Park, H.S. Jun, “Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes,” Front Endocrinol, vol. 9, no.07, pp. 1–10, 2018, doi:10.3389/fendo.2018.00384.
[2] Institute of Medicine (US) Committee on Medicare Coverage of Routine Thyroid Screening; Stone MB, Wallace RB, editors. Medicare Coverage of Routine Screening for Thyroid Dysfunction. Washington (DC): National Academies Press (US), 2003.
[3] Y. Xing, L. Yang, J. Liu, H. Ma, “The Association with Subclinical Thyroid Dysfunction and Uric Acid,” Int J Endocrinol., vol.13, pp.9720618, 2021, doi: 10.1155/2021/9720618.
[4] E. L. de Magalhães et al., "Uric acid: A new marker for metabolic syndrome? Results of a population-based study with adults," Nutrition, Metabolism and Cardiovascular Diseases, vol. 31, no. 7, pp. 2077-2080, 2021.
[5] S. Khichar, S. Choudhary, V. B. Singh, P. Tater, R. Arvinda, and V. Ujjawal, "Serum uric acid level as a determinant of the metabolic syndrome: a case control study," Diabetes & Metabolic Syndrome: Clinical Research & Reviews, vol. 11, no. 1, pp. 19-23, 2017.
[6] I. Mortada, “Hyperuricemia, Type 2 Diabetes Mellitus, and Hypertension: an Emerging Association, ” Current hypertension reports, vol. 19, no.9, pp. 69, 2017, doi: 10.1007/s11906-017-0770-x.
[7] R. Vareldzis, A. Perez, and E. Reisin, “Hyperuricemia: An Intriguing Connection to Metabolic Syndrome, Diabetes, Kidney Disease, and Hypertension,” Curr Hypertens Rep. 2024. doi.org/10.1007/s11906-024-01295-3.
[8] Li, Yang et al., “Demographic, regional and temporal trends of hyperuricemia epidemics in mainland China from 2000 to 2019: a systematic review and meta-analysis,” Global health action, vol. 14, no.1, pp. 1874652, 2021, doi:10.1080/16549716.2021.1874652.
[9] R. Shan et al., "Incidence and risk factors of hyperuricemia among 2.5 million Chinese adults during the years 2017–2018," International journal of environmental research and public health, vol. 18, no. 5, p. 2360, 2021.
[10] M. Kuwabara., T. Kodama, R. Ae, et al., “Update in uric acid, hypertension, and cardiovascular diseases,” Hypertens Res., vol. 46, pp.1714–1726, 2023, doi: 10.1038/s41440-023-01273-3
[11] M. Hage, M.S. Zantout, and S.T. Azar, “Thyroid disorders and diabetes mellitus,” J Thyroid Res., vol.2011, pp.439463, 2011 doi: 10.4061/2011/439463
[12] D. Himanshu, W. Ali, and M. Wamique, “Type 2 diabetes mellitus: pathogenesis and genetic diagnosis,” J Diabetes Metab Disord., vol.19, no.2, pp.1959-1966, 2020, d oi.org/10.1007/s40200-020-00641-x.
[13] Y.S. Eom, J.R. Wilson, and V.J. Bernet, “Links between Thyroid Disorders and Glucose Homeostasis,” Diabetes Metab J., vol.46, no.2, pp.239-256, 2022, doi: 10.4093/dmj.2022.0013.
[14] A.M. Rivas and J. Lado-Abeal, “Thyroid hormone resistance and its management,” Proc Bayl Univ Med Cent., vol.29, no.(2), pp. 209-11, 2016, doi: 10.1080/08998280.2016.11929421.
[15] Y.M. Choi et al., “Association between thyroid hormones and insulin resistance indices based on the Korean National Health and Nutrition Examination Survey,” Sci Rep., vol.11, pp. 21738, 2021, doi: 10.1038/s41598-021-01101-z.
[16] D.A. Mendez and R.M. Ortiz, “Thyroid hormones and the potential for regulating glucose metabolism in cardiomyocytes during insulin resistance and T2DM,” Physiol Rep., vol.16, pp. 14858, 2021, doi: 10.14814/phy2.14858.
[17] R. Shan et al., "Incidence and risk factors of hyperuricemia among 2.5 million Chinese adults during the years 2017–2018," International journal of environmental research and public health, vol. 18, no. 5, p. 2360, 2021.
[18] R. Herman, N.A. Kravos, M. Jensterle, A. Janež, V. Dolžan, “Metformin and Insulin Resistance: A Review of the Underlying Mechanisms behind Changes in GLUT4-Mediated Glucose Transport,” Int J Mol Sci., vol. 23, no.3, pp. 1264, 2022, doi: 10.3390/ijms23031264.
[19] Kushiyama et al., “Role of Uric Acid Metabolism-Related Inflammation in the Pathogenesis of Metabolic Syndrome Components Such as Atherosclerosis and Nonalcoholic Steatohepatitis,” Mediators of inflammation, vol. 2016, pp. 8603164, 2016 doi:10.1155/2016/8603164.
[20] V. Ormazabal et al., “Association between insulin resistance and the development of cardiovascular disease,” Cardiovasc Diabetol., vol. 17, no. 1, pp.122, 2018, doi: 10.1186/s12933-018-0762-4.
[21] N.T. Tahir , I.Q. Falih, F.K. AL-Husaini., S.A. Zeghair, “Study the effect of chemerin level in type II diabetic patients with and without retinopathy,” Systematic Reviews in Pharmacy, vol. 11, no. 11, pp. 1856–1863, 2020.
[22] X.W. Tong et al., “Triglyceride Glucose Index is Related with the Risk of Mild Cognitive Impairment in Type 2 Diabetes,” Diabetes Metab Syndr Obes., vol. 15, pp. 3577-3587, 2022.
[23] R. Huang et al., “Increased Glycemic Variability Evaluated by Continuous Glucose Monitoring is Associated with Osteoporosis in Type 2 Diabetic Patients,” Front Endocrinol (Lausanne), vol. 13, pp. 861131, 2022.
[24] Q. Xiong, J. Liu, and Y. Xu, “Effects of Uric Acid on Diabetes Mellitus and Its Chronic Complications,” Int J Endocrinol., vol. 13, pp. 9691345, 2019, doi:10.1155/2019/9691345.
[25] Rosalinda Madonna et al., “Diabetic macroangiopathy: Pathogenetic insights and novel therapeutic approaches with focus on high glucose-mediated vascular damage,” Vascular Pharmacology., vol. 107, pp. 27-34, 2018, doi: 10.1016/j.vph.2018.01.009.
[26] Y. Hu, Q. Li, R. Min, Y. Deng, Y. Xu, and L. Gao, “The association between serum uric acid and diabetic complications in patients with type 2 diabetes mellitus by gender: a cross-sectional study,” PeerJ., vol. 9, pp. 10691, 2021.
[27] M. Kuwabara, M. Kanbay, and I. Hisatome, “Tips and pitfalls in uric acid clinical research,” Hypertens Res., vol. 46, pp. 771–773, 2023, doi.:10.1038/s41440-022-01148-z.
[28] D. D. Yang et al., “A causal relationship between uric acid and diabetic macrovascular disease in Chinese type 2 diabetes patients: a Mendelian randomization analysis,” International Journal of Cardiology, vol. 214, pp. 194–199, 2016.
[29] A. Mantovani et al., “Hyperuricemia is associated with an increased prevalence of atrial fibrillation in hospitalized patients with type 2 diabetes,” Journal of Endocrinological Investigation. , vol. 39, no. 2, pp. 159–167, 2016, doi: 10.1007/s40618-015-0354-z.
[30] A. Mantovani et al., “Hyperuricemia is associated with an increased prevalence of paroxysmal atrial fibrillation in patients with type 2 diabetes referred for clinically indicated 24-h Holter monitoring,” Journal of Endocrinological Investigation. , vol. 41, no. 2, pp. 223–231, 2018, doi: 10.1007/s40618-017-0729-4.
[31] S. Bonakdaran and B. Kharaqani, “Association of serum uric acid and metabolic syndrome in type 2 diabetes,” Current Diabetes Reviews, vol. 10, no. 2, pp. 113–117, 2014, doi: 10.2174/1573399810666140228160938.
[32] Li, Ya-Li et al., “The risk factor Analysis for type 2 diabetes mellitus patients with nonalcoholic fatty liver disease and positive correlation with serum uric acid,” Cell Biochemistry and Biophysics., vol. 72, no.3, pp. 643–647, 2015, doi:10.1007/s12013-014-0346-1.
[33] F. Viazzi, G. Leoncini, M. Vercelli, G. Deferrari, and R. Pontremoli, “Serum uric acid levels predict new-onset type 2 diabetes in hospitalized patients with primary hypertension: the MAGIC study,” Diabetes Care., vol. 34, no. 1, pp. 126–128, 2011, doi: 10.2337/dc10-0918.
[34] J. Pei, B. Wang, and D. Wang, “Current Studies on Molecular Mechanisms of Insulin Resistance,” J Diabetes Res., pp. 1863429, 2022, doi: 10.1155/2022/1863429.
[35] A.K. Rines, K. Sharabi, C.D. Tavares, and P. Puigserver, “Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov., vol. 15, no. 11, pp. 786-804, 2016, doi: 10.1038/nrd.2016.151.
[36] H.S. Han, G. Kang, J.S. Kim, B.H. Choi, and S.H. Koo, “Regulation of glucose metabolism from a liver-centric perspective,” Exp Mol Med., vol. 48, no. 3, pp. 218, 2016, doi: 10.1038/emm.2015.122.
[37] S.H. Lee, S.Y. Park, and C.S. Choi, “Insulin Resistance: From Mechanisms to Therapeutic Strategies,” Diabetes Metab J., vol. 46, no. 1, pp. 15-37, 2022, doi: 10.4093/dmj.2021.0280.
[38] N.A. Hulett, R.L. Scalzo, and J.E.B. Reusch, “Glucose Uptake by Skeletal Muscle within the Contexts of Type 2 Diabetes and Exercise,” An Integrated Approach. Nutrients, vol. 14, no. 3, pp. 647, 2022, doi: 10.3390/nu14030647.
[39] D. Spira et al., “Association of thyroid function with insulin resistance: data from two population-based studies,” Eur Thyroid J., vol. 11, no. 2, pp. 210063, 2022, doi: 10.1530/ETJ-21-0063.
[40] C. Cui et al., “Thyroid hormone sensitivity and diabetes onset: a longitudinal cross-lagged cohort,” Front Endocrinol (Lausanne), vol. 14, pp. 1267612, 2023, doi: 10.3389/fendo.2023.1267612.
[41] Z. Wu et al., “Association of impaired sensitivity to thyroid hormones with hyperuricemia through obesity in the euthyroid population,” J Transl Med., vol. 21, no. 1, 436, 2023, doi: 10.1186/s12967-023-04276-3.
Downloads
Published
License
Copyright (c) 2024 University of Thi-Qar Journal of Science
This work is licensed under a Creative Commons Attribution 4.0 International License.