Detection and Pathogenicity Features of Pseudomonas Aeruginosa in Patients with Skin Infection
DOI:
https://doi.org/10.32792/utq/utjsci/v11i2.1189Keywords:
Nosocomial infection, Virulence factor, Antimicrobial resistance, Susceptibility, BiofilmAbstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen often concerning studies in bacterial resistance and pathogenicity. Nosocomial infections from burns and surgical site infections are often caused by destruction of the natural defenses of the skin, exposed matrix proteins and inflammatory factors being compromised making it easier for P. aeruginosa to colonize the area leading to infection. For this experiment, 113 wound and burn samples collected from hospitalized immunocompromised patients. 26 isolates tested positive for P. aeruginosa with associated virulence factors. Identification of bacteria concluded biochemical assays, antibiotics susceptibility, and the ability of biofilm formation and the presence of P.aeruginosa in different skin samples. The study showed 66.53% of the isolates were resistant to antibiotics including (AK, GN, IPM, LEV, CIP, ATM, PRL and TZP), while prevalence of sensitivity was to Meropenem (65.38%) and Cefepime (19.23%).
Biofilm formation assay showed all P.aeruginosa isolates formed biofilms at different levels (65.3%) weak (27%) moderate and (7.7%) strong biofilm formation. Following the study's conclusion, consider specific strategies for managing and shielding future generations against P.aeruginosa bacterial infections.
Received: 2024-03-05
Revised: 2024-03-23
Accepted: 2024-03-31
References
[1] S.P .Diggle, M. Whiteley, Microbe Profile:"Pseudomonas aeruginosa: opportunistic pathogen and lab rat". Microbiology (Reading) vol.166, p.30–33, 2020.
https://doi.org/10.1099/mic.0.000860
[2] A. Sikora, F. Zahra, "Nosocomial Infections”. StatPearls Publishing, 2023 https://www.ncbi.nlm.nih.gov/books/NBK559312/
[3] J. Botelho, F.Grosso, L. Peixe, "Antibiotic resistance in Pseudomonas aeruginosa–Mechanisms, epidemiology and evolution". Drug resistance updates vol. 44, 100640, 2019. https://www.news-medical.net/life-sciences/Challenges-with-Sanger-Sequencing.aspx
[4] A.K.H. Al-Buaiji, "Molecular study parC and gyrA genes of multidrug resistant Pseudomonas aeruginosa Isolated from Clinical Specimens", M.S.C thesis Institute of Genetic Engineering and Biotechnology for Post Graduate Studies/ University of Baghdad,2019.
[5] Z. Pang, R. Raudonis, B.R. Glick, T.J. Lin, Z. Cheng, "Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies". Biotechnology Advances, vol. 37, p.177–192, 2019. https://doi.org/10.1016/j.biotechadv.2018.11.013
[6] U. Verma, S. Kulshreshtha, and P.K. Khatri, " MDR Pseudomonas aeruginosa in Nosocomial Infection: Burden in ICU and Burn Units of a Tertiary Care Hospital". Microbiol.App.Sci. vol. 2322-2322 .p. 2(2), 2018.
[7] N. Sathe, P. Beech, L. Croft, C. Suphioglu, A. Kapat, E. Athan, "Pseudomonas aeruginosa: Infections and novel approaches to treatment “Knowing the enemy” the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment". Infectious Medicine, vol. 2, p. 178–194, 2023. https://doi.org/10.1016/j.imj.2023.05.003
[8] M.R. Gonzalez, B. Fleuchot, L. Lauciello, P. Jafari, L.A. Applegate, W. Raffoul, Y.A. Que, & K. Perron, "Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence". mSphere, vol. 1 no. (2), e00111-15, 2016. https://doi.org/10.1128/mSphere.00111-15
[9] B.K. Chan, M. Sistrom, J.E. Wertz, K.E Kortright, D. Narayan, P.E. Turner, "Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa". Scientific reports, vol.6, p. 26717, 2019 Me, I., M, A., Am, A.-S., Bk, E., "Phenotypic Characterization and Antibiotic Resistance Patterns of Extended-Spectrum β-Lactamase- and AmpC β-Lactamase-Producing Gram-Negative Bacteria in a Referral Hospital, Saudi Arabia". The Canadian journal of infectious diseases & medical microbiology https://doi.org/10.1155/2019/6054694
[10] D Kleef, R. Khwam, " Isolation of Bacterial Causative agents for Diabetic Foot patients and Antibiotic Susceptibility test against Bacterial Isolates". UTJsci vol. 10, 2023. https://doi.org/10.32792/utq/utjsci/v10i1(SI).1032
[11] S. Qureshi, and M.S. Bronze, "Pseudomonas aeruginosa Infections Clinical Presentation". Medscape Registration, 2023. https://emedicine.medscape.com/article/226748-clinical?form=fpf
[12] A.P. Magiorakos, A. Srinivasan, RB. Carey, "Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance." Clin Microbiol Infect; vol. 18 no. (3) p. 268–281, 2012. doi: 10.1111/j.1469-0691.2011.03570.x
[13] J. Phan, S. Ranjbar, M. Kagawa, M. Gargus, A.L. Hochbaum, K.L. Whiteson, "Thriving Under Stress: Pseudomonas aeruginosa Outcompetes the Background Polymicrobial Community Under Treatment Conditions in a Novel Chronic Wound Model". Frontiers in Cellular and Infection Microbiology, vol.10, 2020.
[14] P. Pachori, R. Gothalwal, & P. Gandhi, "Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review". Genes & diseases, vol. 6 no. (2), p. 109–119, 2019. https://doi.org/10.1016/j.gendis.2019.04.001
[15] J.M. R. Al-Shara, "Phenotypic and molecular detecting of carbapenem resistant Pseudomonas aeruginosa in Najaf Hospitals". Ph.D. Thesis. Faculty of Science. University of Kufa. Iraq, 2013.
[16] A.A. Khan, & C.E Cerniglia, "Detection of Pseudomonas aeruginosa from clinical and environmental samples by amplification of the exotoxin A gene using PCR". Applied and environmental microbiology, vol. 60 no. (10), p.3739-3745, 1994.
[17] Z. Alkhulaifi, K. Mohammed, "The Prevalence of Cephalosporins resistance in Pseudomonas aeruginosa isolated from clinical specimens in Basra, Iraq". UTJsci 10, 2023. https://doi.org/10.32792/utq/utjsci/v10i1(SI).1010
[18] R. Shuwaikh, A. Mujahid, "Antibiotics and their uses". Oman Dar Tigris for Publishing and Distribution. First edition. p. 13-39, 2016.
[19] A. Karruli, C. D. Catalini, C. ’Amore, F. Foglia, F. Mari, A. Harxhi, M. Galdiero, E. Durante-Mangoni, "Evidence-Based Treatment of Pseudomonas aeruginosa Infections: A Critical Reappraisal". Antibiotics vol. 12, p. 399, 2023. https://doi.org/10.3390/antibiotics12020399
[20] I.H. Hashim, Q.A. Wdaah, A. Atya, "Potential effect of antimicrobial agents against Staphylococcus aureus and Pseudomonas aeruginosa strains from patients with skin infections". UTJsci vol. 7, p.7–14, 2019.
[21] H.V. Prashanth, R. Prakash, R.J Girishbabu, A. Kausar, A. and V. Krishnamurthy, "Antimicrobial susceptibility pattern of Pseudomonas aeruginosa". J. of Pharma. and Biomed. Scie.vol. 29 no. (29) p.814- 817, 2013.
[22] EJ Yoon EJ, SH Jeong SH , "Mobile carbapenemase genes in Pseudomonas aeruginosa". Front Microbiol.2021 https:// doi. Org/ 10. 3389/ fmicb. 2021. 61405
[23] L.B. Al-husseini, A. Maleki, E. Kouhsari, S. Ghafourian, M. Mahmoudi, and M F. Al Marjani, "Evaluation of type II toxin-antitoxin systems, antibiotic resistance, and biofilm production in clinical MDR Pseudomonas aeruginosa isolates in Iraq". Gene Reports, vol.17 no. (19) p.1-21, 2019.
[24] S. H Haji, "Detection of biofilm formation in Pseudomonas aeruginosa isolates from clinical specimens". Zanco Journal of Pure and Applied Sciences, vol.30 no. (4) p.8-83, 2018.
[25] A. Brooun, S. Liu, and K. Lewis, "A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms". Antimicrob. Agents Chemother. Vol. 44, p. 640-646, 2000.
Downloads
Published
License
Copyright (c) 2024 University of Thi-Qar Journal of Science
This work is licensed under a Creative Commons Attribution 4.0 International License.