Susceptibility in a Coupled Double Quantum Dot-Metal Nanoparticle System under Standing Wave Field

Authors

  • Haneen Akram Nasiriya Nanotechnology Research Laboratory (NNRL), College of Science, University of Thi-Qar Nasiriya, Iraq
  • Muwaffaq Abdullah Nasiriya Nanotechnology Research Laboratory (NNRL), College of Science, University of Thi-Qar Nasiriya, Iraq
  • El Mustapha Feddi Group of Optoelectronic of Semiconductors and Nanomaterials, ENSAM, Mohammed V University in Rabat, Morocco.
  • Amin H. Al-Khursan Nasiriya Nanotechnology Research Laboratory (NNRL), College of Science, University of Thi-Qar Nasiriya, Iraq
  • Ali M. Muslim Department of Computer and Communication System Engineering, University Putra Malaysia, Serdang, Malaysia

DOI:

https://doi.org/10.32792/utq/utjsci/v11i1.1156

Abstract

The main purpose of this work is studying the linear Susceptibility in the hybrid nanostructure that composed of a dual quantum dot (DQD) and metal nanoparticle (MNP) hybrid system under a standing-wave field. In our model, we used density matrix equations by taking into our account the interaction between excitons and surface plasmons. The proposed DQD is composed of two QDs. Each QD contains an InAs QD with a disk shape. The interaction between the QD and the wetting layer (WL) is taken into consideration. The application of the standing wave field on DQD-MNP hybrid system was modeled and examined. The susceptibility of thehybridDQD-MNPsystem reduced by the pump field under a standing-wave field. The high susceptibility obtained with a wide MNP radius. An interesting result was shown in the inversion of the grating period with the tunneling component in the conduction band. The smaller size of DQD gave us high susceptibility due to the quantization effect.

References

M.-T. Cheng, S.-D. Liu, H.-J. Zhou, Z.-H. Hao, and Q.-Q. Wang, "Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,"Opt. Lett., vol. 32, no. 15, pp. 2125, 2007.

S. M. Sadeghi, "The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems," Nanotechnology, vol. 20, no. 22, pp. 20–26, 2009.

A. Smponias, D. Stefanatos, and E. Paspalakis, "Fast and robust exciton preparation inacoupled semiconductor quantum dot-metal nanoparticle system using shortcuts to adiabaticity," J. Appl. Phys., vol. 129, pp. 123107, 2021.

A. Smponias, D. Stefanatos, and E. Paspalakis, "Efficient Biexciton State Preparation in a Semiconductor Quantum Dot-Metallic Nanoparticle Hybrid Structure Using Transitionless Quantum Driving," Ann. Phy., vol. 534, pp. 2270001, 2022.

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, Bioconjugates of CdTe nanowires and Au nanoparticles plasmon-exciton interactions, luminescence enhancement, and collective effects, Nano Lett., vol.4 pp. 2323–2330, 2004.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-enhanced emission from single semiconductor nanocrystals," Phys. Rev. Letters, vol. 89, pp. 117401, 2002.

A. O. Govorov and H. H. Richardson, "Generating heat with metal nanoparticles," Nano Today, vol. 2, pp. 30–38, 2007.

S. M. Sadeghi, "Coherent control of metallic nanoparticles near fields: Nanopulse controllers and functional nanoamplifiers," Phys. Rev. B, vol. 82, pp. 1-7, 2010.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, "Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the fano effect on photon statistics," Phys. Rev. Lett., vol. 105, no. 26, pp. 263601, 2010.

Z. Lu and K. Di Zhu, "Slow light in an artificial hybrid nanocrystal complex," J. Phys. B At. Mol. Opt. Phys., vol. 42, no. 1, pp. 015502, 2009.

E. Paspalakis, S. Evangelou, and A. F. Terzis, "Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system," Phys. Rev. B, vol. 87, no. 23, pp. 235302, 2013.

S. M. Sadeghi, "Gain without inversion in hybrid quantum dot-metallic nanoparticle systems," Nanotechnology, vol. 21, no. 45, pp. 455401, 2010.

H. Xu, J. Liu, X. Duan, J. Li, J. Xue, X. Sun, Y. Cai, Z. Zhou, and X. Wang, Enhance energy transfer between quantum dots by the surface plasmon of Ag island film, Opt. Mater. Express, vol. 4, PP. 2586-2594, 2014.

A. V. Malyshev and V. A. Malyshev, "Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer," Phys. Rev. B - Condens. Matter Mater. Phys., vol. 84, no. 3, pp. 035314, 2011.

. G. Kosionis and E. Paspalakis, "Pump-probe optical response of semiconductor quantum dot—Metal nanoparticle hybrids," J. Appl. Phys., vol. 124, pp. 223104, 2018.

Y. Zhao and Y. Jiang, "Effect of KrF excimer laser irradiation on the properties of ZnO thin films," J. Appl. Phys., vol. 103, no. 11, pp. 114903, 2008.

J. H. Huang and R. Chang, "Nonlocal and nonlinear effects on the dispersion relation for surface plasmon at a metal-Kerr medium interface," J. opt., vol. 12, pp. 045003, 2010.

X. N. Liu, D. Z. Yao, H. M. Zhou, F. Chen, and G. G. Xiong, Third-order nonlinear optical response in quantum dot-metal nanoparticle hybrid structures, Appl. Phys. B, vol. 113, pp.603-610, 2013.

A. F. Terzis, S. G. Kosionis, J. Boviatsis, and E. Paspalakis, Nonlinear optical susceptibilities of semiconductor quantum dot—Metal nanoparticle hybrids, J. Mod. Opt., vol. 63, pp. 451-461, 2016.

S. Evangelou, V. Yannopapas, and E. Paspalakis, "Modification of Kerr nonlinearity in a four-level quantum system near a plasmonic nanostructure," J. mod. opt., vol. 61, pp. 1458-1464, 2014.

J.-B. Li, M.-D. He, and L.-Q. Chen, "Four-wave parametric amplification in semiconductor quantum dot-metallic nanoparticle hybrid molecules," Opt. Express, vol. 22, no. 20, p. 24734, 2014.

V . V. Flambaum and V. A. Dzuba, "Electric dipole moments of atoms and molecules produced by enhanced nuclear Schiff moments," Phys. Rev. A, vol. 101, pp. 1-12, 2019.

M. R. Avadi, A. M. Sadeghi, N. Mohammadpour, S. Abedin, F. Atyabi, R. Dinarvand, M. Rafiee-Tehrani, "Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method," Nanomedicine, vol. 6, pp. 58-63, 2010.

E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, "Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system," J. Appl. Phys., vol. 115, pp. 083106, 2014.

S. K. Singh, M. K. Abak, and M. E. Tasgin, "Enhancement of four-wave mixing via interference of multiple plasmonic conversion paths," Phys. Rev. B, vol. 93, pp. 035410, 2016.

S. G. Kosionis, E. Paspalakis, "Absorption and Dispersion Properties of a Coupled Asymmetric Double Quantum Dot Molecule–Metal Nanoparticle Structure," Engineering Proceedings, vol. 56, no.1, pp. 244, 2023.

S. L.Chuang, Physics of optoelectronic devices, 1st Edition, Wiley, New Jersy, (1995).

R. D. Artuso and G. W. Bryant, "Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability," Nano Letters, vol. 8, no. 7, pp. 2106–2111, 2008.

R. D. Artuso and G. W. Bryant, Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects, Phys. Rev. B, vol. 82, pp. 195419, 2010.

A. Yariv, Quantum Electronics, Wiley, New York, (1975).

H. G. Al-Toki and A. H. Al-Khursan, "Negative refraction in the double quantum dot system," Opt. Quantum Electron, vol. 52, pp. 467, 2020.

H. Akram and A. H. Al-Khursan, "Second-order nonlinearity in ladder plus-Y configuration in double quantum dot structure," Appl. Opt., vol. 55, pp. 9866-9874, 2016.

A. H. Flayyih, and A. H. Al-Khursan, "Integral gain in quantum dot semiconductor optical amplifiers," Superlattices and Microstructures, vol. 62, pp. 81-87, 2013.

E. Rehman and A. H. Al-Khursan, "All-optical processes in double quantum dot structure," Appl. Opt., vol. 55, pp. 7337-7344, 2016.

E. Placidi, F. Arciprete, V. Sessi, M. Fanfoni, F. Patella, and A. Balzarotti," Step erosion during nucleation of InAs∕GaAs (001) quantum dots," Applied Physics Letters, vol. 86, no. 24, pp. 241913, 2005.

M. Markiewicz, H. Voss, "Electronic States in Three Dimensional Quantum Dot/Wetting Layer Structures", Lecture Notes in Computer Science, vol. 3980, pp. 684–693, 2006.

H. H. Al-Ameri, M. Abdullah, and A. H. Al-Khursan, "Entanglement in ladder-plus-Y-double quantum dot structure via entropy," Appl. Opt., vol. 58, pp. 369-382, 2019.

F. R. Al-Salihi and A. H. Al-Khursan, "Electromagnetically induced grating in double quantum dot system using spontaneously generated coherence," Chin. J. Phys., vol. 70, pp. 140-150, 2021.

J. N. Jabir, S. M. M. Ameen, and A. H. Al-Khursan, "Plasmonic quantum dot nanolaser: Effect of ‘waveguide Fermi energy," Plasmonics, vol. 14, pp. 1881-1891, 2019.

J. N. Jabir, S. M. M. Ameen, and A. H. Al-Khursan, "Plasmonic quantum dot nanocavity laser: Hybrid modes," Plasmonics, vol. 15, pp. 1451-1458, 2020.

J. N. Jabir, S. M. M. Ameen, and A. H. Al-Khursan, "Modeling of dielectric function in plasmonic quantum dot nanolaser," Opt. Quantum Electron, vol. 51, pp. 396, 2019.

M. Gioannini and I. Montrosset, "Numerical Analysis of the Frequency Chirp in Quantum-Dot Semiconductor Lasers," IEEE J. Quantum Electronics, vol. 43, pp. 941-949, 2007.

S. Hadi and A. H. Al-Khursan, "Recombination rates of the double quantum dot solar cell structure," Phys. Scr., vol. 96, pp. 125820, 2021.

C. H. Yuan and K. Di Zhu, "Voltage-controlled slow light in asymmetry double quantum dots," Appl. Phys. Lett., vol. 89, pp. 1-4, 2006.

I. N. Shklyarevskii and P. L. Pakhmov, "Optoelectronic Properties Correlation to Preparation of Au/La-oxide Nanocomposite Films," Science of Sintering, vol. 45, pp. 189-197, 2013.

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, "Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects," Phys. Rev., vol. 77, no. 16, pp. 165301, 2008.

Downloads

Published

2024-06-01

Issue

Section

Articles

Categories

How to Cite

Susceptibility in a Coupled Double Quantum Dot-Metal Nanoparticle System under Standing Wave Field. (2024). University of Thi-Qar Journal of Science, 11(1), 8-15. https://doi.org/10.32792/utq/utjsci/v11i1.1156