Cross gain modulation in quantum dot semiconductor optical amplifiers under the influence of the Probe

Authors

  • Ahmed Flayyih University of Thi-Qar
  • Seyedeh Hamideh Kazemi Department of Physics/ University of Zanjan
  • Amin Al-Khursan University of Thi-Qar

DOI:

https://doi.org/10.32792/utq/utjsci/v10i2.1132

Keywords:

quantum dot, semiconductor optical amplifier, cross gain modulation XGM

Abstract

The Pulse effect on the  cross-gain modulation (XGM) in the quantum dot (QD) semiconductor optical amplifiers (SOAs) is investigated using the combining of the SOA power with the QD rate equations system. The QDs structure  includes  three regions: ground state (GS), excited state (ES) and wetting layer (WL). Thus, a set of rate equations for pump and probe signals is introduced for both steady-state and small-signal power values, which are solved numerically. The pulse shape was included in the analysis, for pump and probe signals.  The theoretical results showed a good agreement with the experimental results. It was found that decreasing pulse width of pump/probe ratio is efficient to increase XGM efficiency and bandwidth.

References

D. Pastor, A. Martinez, J. Capmany, Salvador. Sales, B. Ortega, and P. Munoz, "Experimental characterization of XGM-SOA-based wavelength converted SCM systems", IEEE Photonics Technology Letters 15, 2003, 114-116.

W. Zhaoxi, H. Yuanqing, W. Zihua,Y. Ruifang, "All-optical wavelength conversion based on cascaded effect of cross gain modulation and cross-phase modulation in SOAs", SPIE 6625, 2008, 66251V1-8.

T. Durhuus, B. Mikkelsen, C. Joergensen, and K. E. Stubkjaer, "All optical wavelength conversion by semiconductor optical amplifiers", J. Lightwave Technol., 14, 1996, 942–954.

Y. Ben Ezra, B. I. Lembrikov, and M. Haridim, "Specific features of XGM in QD-SOA", IEEE J. Quantum Electronics 43, 2007, 730-737.

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, "Cross-gain compression in semiconductor optical amplifiers", J. Lightwave Technology 25, 2007, 915-921.

G. P. Agrawal, Fiber Optic Communication Systems, 3rd ed. New York: Wiley, 2002.

H. Lee, H. Yoon, Y. Kim, and J. Jeong, “Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOAs”, IEEE J. Quantum Electronics 35, 1999, 1213–1219.

S. Xu, J. B. Khurgin, I. Vurgaftman, and J. R. Meyer, “Reducing crosstalk and signal distortion in wavelength-division multiplexing by increasing carrier lifetimes in semiconductor optical amplifiers,” J. Lightwave Technology 21, 2003, 1474–1485.

D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, W. G. Jeong,

C. Y. Chen, and T. S. Lay , ‘High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers’, Applied Physics Letters 92, 2008.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers” , Phys. Rev. B 69, 2004.

P. S. Cho and J. B. Khurgin, " Suppression of Cross-Gain Modulation in SOA Using RZ-DPSK Modulation Format", IEEE Photonics Technology Letters 15, 2003, 162-164.

J. Kim and S. L. Chuang, "Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers", IEEE Photonics Technology Letters 18, 2006, 2538 -2540.

F. Keshavarz and V. Ahmadi, "High-Speed Pattern Effect Free Cross-Gain Modulation in QD-VCSOA", J. Lightwave Technology 30, 2012, 3043-3049.

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, "Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers", IEEE J. Quantum Electronics 46, 2010, 405-413.

A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, "Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs–InP quantum-dash semiconductor optical amplifiers operating at 1550 nm", IEEE Photonics Technology Letters 15, 2003, 563-565.

M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier,” Opt. Exp. 19, 2011, B551–B559.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, " Cross-gain modulation in quantum-dot SOA at 1550 nm", IEEE J. Quantum Electronics 46, 2010, 1696-1703.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. Kovsh, I. Krestnikov, and D. Bimberg, "High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 μm", IEEE J.

Selected Topics in Quantum Electronics 15, 2009, 749-756.

O. Qasaimeh, “Characteristics of cross-gain wavelength conversion in quantum dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., 16, 2004, 542–544.

A. Mecozzi, “Small-signal theory of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers”, IEEE Photonics Technol. Lett. 8, 1996, 1471–1473.

M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, K. Otsubo, and H. Ebe, "Quantum-dot semiconductor optical amplifiers", Proceedings of SPIE, 4905, 2002, 259-275.

S. L. Chuang, “physics of optoelectronics”, John Wiley & Sons, USA, PP. (708-711), 1995.

S. Adachi , “Properties of Group-IV, III–V and II–VI semiconductors” , Japan, 2005.

Downloads

Published

2023-12-26

Issue

Section

Articles

Categories

How to Cite

Cross gain modulation in quantum dot semiconductor optical amplifiers under the influence of the Probe. (2023). University of Thi-Qar Journal of Science, 10(2), 171-176. https://doi.org/10.32792/utq/utjsci/v10i2.1132