Tuning the Electronic and Chemical Properties of Graphene Quantum Dots via CO2 Adsorption: Insights from DFT Calculations

Authors

  • Diyaa Hussein University of Sumer
  • Fouad Nimar University of Sumer
  • Ali Ben Ahmed University of Sfax, Tunisia

DOI:

https://doi.org/10.32792/utq/utjsci/v12i2.1506

Abstract

The effects of edge modification with carbon dioxide (CO2) on the electronic and structural properties of graphene quantum dots (GQDs) are analyzed in this work with density functional theory. Pristine GQDs and GQDs with one to four AC molecules edge modification are examined for their energetic and chemical properties. The study reveals a substantial reduction in the energy gap through CO2 edge modification, with a minimum of 91.2% energy gap reduction for GQDs modified with four CO2 molecules. Changes to the bandgap modulated the Fermi level, highest occupied molecular orbital and the lowest unoccupied molecular orbital energies, showing the electronic properties of GQDs could be tuned by edge engineering. Furthermore, global chemical descriptors (ionization potential, electronic affinity, chemical hardness, and electrophilicity) at the edge modification were all notably affected. Edge modification with CO2 was found to increase electrophilicity and lower chemical hardness, resulting in GQDs exhibiting higher inherent activity and greater electron-accepting ability. The results presented in this study demonstrate that edge modification again CO2 provides a powerful vehicle for tuning the electronic and chemical behavior of GQDs and suggest the use of GQDs as an advanced candidate for electronics and sensing at the nanoscale.

References

‎[1]‎ T. Zhang, L. Li, X. Sun, Y. Shi, W. Cheng, and L. ‎Pan, "Recent advances in nanomaterials for wearable ‎devices: classification, synthesis, and applications," ‎Nanotechnology, 2025.‎

‎[2]‎ F. N. Ajeel, M. H. Mohammed, and A. M. ‎Khudhair, "Electronic, thermochemistry and vibrational ‎properties for single-walled carbon nanotubes," ‎Nanoscience & Nanotechnology-Asia, vol. 8, no. 2, pp. ‎‎233-239, 2018.‎

‎[3]‎ P. Singh et al., "Two-dimensional nanomaterials: ‎Recent progress, properties, applications, and future ‎directions for wearable body sensors," One-and Two-‎Dimensional Nanomaterials, pp. 349-373, 2025.‎

‎[4]‎ K. S. Novoselov et al., "Electric field effect in ‎atomically thin carbon films," science, vol. 306, no. ‎‎5696, pp. 666-669, 2004.‎

‎[5]‎ F. N. Ajeel, K. H. Mohsin, H. G. Shakier, S. K. ‎Khamees, and M. N. Mutier, "Theoretical insights into ‎tunable electronic properties of graphene quantum dots ‎through ZnO doping," Chemical Physics Impact, vol. 7, p. ‎‎100305, 2023.‎

‎[6]‎ Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, ‎‎"Experimental observation of the quantum Hall effect ‎and Berry's phase in graphene," nature, vol. 438, no. ‎‎7065, pp. 201-204, 2005.‎

‎[7]‎ F. Schwierz, "Graphene transistors," Nature ‎nanotechnology, vol. 5, no. 7, pp. 487-496, 2010.‎

‎[8]‎ F. Xia, D. B. Farmer, Y.-m. Lin, and P. Avouris, ‎‎"Graphene field-effect transistors with high on/off ‎current ratio and large transport band gap at room ‎temperature," Nano letters, vol. 10, no. 2, pp. 715-718, ‎‎2010.‎

‎[9]‎ C. Han-Hee, Y. Hyunseung, and K. D. Jin, ‎‎"Surface Engineering of Graphene Quantum Dots and ‎Their Applications as Efficient Surfactants," 2015.‎

‎[10]‎ K. Rane, Synthesis, Characterization, and ‎Applications of Novel Graphene-Based Nanomaterials ‎Derived from Sub-Bituminous Coal. University of ‎Wyoming, 2022.‎

‎[11]‎ F. N. Ajeel, Y. W. Ouda, and S. A. Abdullah, ‎‎"Graphene nanoflakes as a nanobiosensor for amino acid ‎profiles of fish products: Density functional theory ‎investigations," Drug Invention Today, vol. 12, no. 12, p. ‎‎9, 2019.‎

‎[12]‎ F. N. Ajeel, M. N. Mutier, K. H. Mohsin, S. K. ‎Khamees, A. M. Khudhair, and A. B. Ahmed, ‎‎"Theoretical study on electronic properties of BN dimers ‎doped graphene quantum dots," BioNanoScience, vol. ‎‎14, no. 2, pp. 1110-1118, 2024.‎

‎[13]‎ S. K. Khamees, F. N. Ajeel, K. H. Mohsin, and M. ‎N. Mutier, "Influence of B, si, ge, and as impurities on the ‎electronic properties of graphene quantum dot: A density ‎functional theory study," Nano Trends, vol. 7, p. 100049, ‎‎2024.‎

‎[14]‎ F. N. Ajeel, N. B. Shwayyea, M. K. Salman, A. M. ‎Khudhair, and A. B. Ahmed, "Tuning the electronic and ‎optical properties of graphene quantum dots by vacancy ‎defect with Si-doping: DFT insights," Applied Physics B, ‎vol. 131, no. 7, p. 143, 2025.‎

‎[15]‎ A. L. Routzahn, S. L. White, L. K. Fong, and P. K. ‎Jain, "Plasmonics with doped quantum dots," Israel ‎Journal of Chemistry, vol. 52, no. 11‐12, pp. 983-991, ‎‎2012.‎

‎[16]‎ D. Mombrú, M. Romero, R. Faccio, and Á. W. ‎Mombrú, "Electronic and optical properties of sulfur and ‎nitrogen doped graphene quantum dots: A theoretical ‎study," Physica E: Low-dimensional Systems and ‎Nanostructures, vol. 113, pp. 130-136, 2019.‎

‎[17]‎ H. Abdelsalam, H. Elhaes, and M. A. Ibrahim, ‎‎"Tuning electronic properties in graphene quantum dots ‎by chemical functionalization: Density functional theory ‎calculations," Chemical Physics Letters, vol. 695, pp. ‎‎138-148, 2018.‎

‎[18]‎ A. K. Geim and K. S. Novoselov, "The rise of ‎graphene," Nature materials, vol. 6, no. 3, pp. 183-191, ‎‎2007.‎

‎[19]‎ K. Ghosh et al., "CO2 activation on transition ‎metal decorated graphene quantum dots: An insight from ‎first principles," Physica E: Low-dimensional Systems ‎and Nanostructures, vol. 135, p. 114993, 2022.‎

‎[20]‎ A. Ghaffarkhah et al., "Synthesis, applications, ‎and prospects of graphene quantum dots: a ‎comprehensive review," Small, vol. 18, no. 2, p. ‎‎2102683, 2022.‎

‎[21]‎ D. Pan, J. Zhang, Z. Li, and M. Wu, ‎‎"Hydrothermal route for cutting graphene sheets into ‎blue‐luminescent graphene quantum dots," Advanced ‎materials, vol. 22, no. 6, pp. 734-738, 2010.‎

‎[22]‎ W. Kohn, A. D. Becke, and R. G. Parr, "Density ‎functional theory of electronic structure," The journal of ‎physical chemistry, vol. 100, no. 31, pp. 12974-12980, ‎‎1996.‎

‎[23]‎ N. M. El-Sayed, H. Elhaes, A. Ibrahim, and M. A. ‎Ibrahim, "Investigating the electronic properties of edge ‎glycine/biopolymer/graphene quantum dots," Scientific ‎Reports, vol. 14, no. 1, p. 21973, 2024.‎

‎[24]‎ F. N. Ajeel, A. M. Khudhair, and A. A. ‎Mohammed, "Density functional theory investigation of ‎the physical properties of dicyano pyridazine ‎molecules," Int. J. Sci. Res, vol. 4, no. 1, pp. 2334-2339, ‎‎2015.‎

‎[25]‎ E. Engel, Density functional theory. Springer, ‎‎2011.‎

‎[26]‎ S. Y. Quek and K. H. Khoo, "Predictive DFT-‎based approaches to charge and spin transport in single-‎molecule junctions and two-dimensional materials: ‎Successes and challenges," Accounts of Chemical ‎Research, vol. 47, no. 11, pp. 3250-3257, 2014.‎

‎[27]‎ J. Kang, X. Zhang, and S.-H. Wei, "Advances and ‎challenges in DFT-based energy materials design," ‎Chinese Physics B, vol. 31, no. 10, p. 107105, 2022.‎

‎[28]‎ J. P. Perdew and A. Ruzsinszky, "Density ‎functional theory of electronic structure: a short course ‎for mineralogists and geophysicists," Reviews in ‎Mineralogy and Geochemistry, vol. 71, no. 1, pp. 1-18, ‎‎2010.‎

‎[29]‎ M. Bacon, S. J. Bradley, and T. Nann, "Graphene ‎quantum dots," Particle & Particle Systems ‎Characterization, vol. 31, no. 4, pp. 415-428, 2014.‎

‎[30]‎ F. N. Ajeel, S. K. Khamees, K. H. Mohsin, and M. ‎N. Mutier, "Effect of AlN dimers on the electronic ‎properties of graphene quantum dot: DFT ‎investigations," Chemical Physics Impact, vol. 7, p. ‎‎100364, 2023.‎

‎[31]‎ A. K. Bhui, S. Shukla, S. Sen, and A. Dey, ‎‎"Properties of Quantum Dots Based Nanocomposites," in ‎Quantum Dots Based Nanocomposites: Design, ‎Fabrication and Emerging Applications: Springer, 2024, ‎pp. 85-114.‎

‎[32]‎ A. Jan et al., "Functionalized Graphene Quantum ‎Dots (FGQDs): A review of their synthesis, properties, ‎and emerging biomedical applications," Carbon Trends, ‎vol. 18, p. 100442, 2025.‎

‎[33]‎ C. Hu, L. Song, Z. Zhang, N. Chen, Z. Feng, and ‎L. Qu, "Tailored graphene systems for unconventional ‎applications in energy conversion and storage devices," ‎Energy & Environmental Science, vol. 8, no. 1, pp. 31-54, ‎‎2015.‎

‎[34]‎ V. Choudhary, A. Bhatt, D. Dash, and N. Sharma, ‎‎"DFT calculations on molecular structures, HOMO–‎LUMO study, reactivity descriptors and spectral analyses ‎of newly synthesized diorganotin (IV) 2‐‎chloridophenylacetohydroxamate complexes," Journal ‎of computational chemistry, vol. 40, no. 27, pp. 2354-‎‎2363, 2019.‎

‎[35]‎ F. Akman, "A density functional theory study ‎based on monolignols: Molecular structure, HOMO-‎LUMO analysis, molecular electrostatic potential," ‎transport, vol. 1, p. 2, 2019.‎

‎[36]‎ M. Mohammadi, F. Sharifi, and A. ‎Khanmohammadi, "A DFT-based theoretical approach on ‎the strength of non-covalent interactions of 2, 4-dioxo-4-‎phenylbutanoic acid complex: structural analysis and ‎electronic properties," Theoretical Chemistry Accounts, ‎vol. 144, no. 1, p. 7, 2025.‎

‎[37]‎ A. Mohamed, D. P. Visco Jr, K. Breimaier, and D. ‎M. Bastidas, "Effect of molecular structure on the ‎B3LYP-computed HOMO–LUMO gap: a structure− ‎property relationship using atomic signatures," ACS ‎omega, vol. 10, no. 3, pp. 2799-2808, 2025.‎

‎[38]‎ C. Prabhu, P. Rajesh, M. Lawrence, S. Sahaya ‎Jude Dhas, and A. I. Almansour, "Computational aspects ‎of DFT, HOMO-LUMO, PED, molecular docking and ‎basic characterisations of Octadec-9-Enoic Acid ‎‎(C18H34O2)," Molecular Physics, vol. 123, no. 4, p. ‎e2385572, 2025.‎

‎[39]‎ F. Pereira, K. Xiao, D. A. Latino, C. Wu, Q. ‎Zhang, and J. Aires-de-Sousa, "Machine learning ‎methods to predict density functional theory B3LYP ‎energies of HOMO and LUMO orbitals," Journal of ‎chemical information and modeling, vol. 57, no. 1, pp. ‎‎11-21, 2017.‎

‎[40]‎ F. E. Abeng, A. Thakur, V. C. Anadebe, and E. E. ‎Ebenso, "A comparative density functional theory (DFT) ‎and molecular dynamics study on Natamycin and ‎Cefmetazole as effective corrosion inhibitor for mild ‎steel: Electronic properties and adsorption behavior," ‎Computational and Theoretical Chemistry, vol. 1248, p. ‎‎115200, 2025.‎

‎[41]‎ C. Khamdang and M. Wang, "Defect formation ‎in CsSnI 3 from density functional theory and machine ‎learning," Journal of Materials Chemistry C, vol. 13, no. ‎‎15, pp. 7550-7557, 2025.‎

‎[42]‎ K. E. Drexler, "Toward integrated nanosystems: ‎fundamental issues in design and modeling," Journal of ‎Computational and Theoretical Nanoscience, vol. 3, no. ‎‎1, pp. 1-10, 2006.‎

‎[43]‎ G. Ohad, M. Camarasa-Gómez, J. B. Neaton, A. ‎Ramasubramaniam, T. Gould, and L. Kronik, ‎‎"Foundations of the ionization potential condition for ‎localized electron removal in density functional theory," ‎arXiv preprint arXiv:2506.00629, 2025.‎

‎[44]‎ R. E. Gutierrez, I. Matanovic, M. P. Polak, D. ‎Morgan, and E. Schamiloglu, "Density functional theory ‎calculations of the electronic structure and dielectric ‎properties of metal oxide systems Al2O3, MgO, Cu2O, ‎TiO2, WO3," Journal of Electron Spectroscopy and ‎Related Phenomena, vol. 278, p. 147512, 2025.‎

‎[45]‎ J. Feng et al., "Density functional theory study ‎on optical and electronic properties of co-doped ‎graphene quantum dots based on different nitrogen ‎doping patterns," Diamond and Related Materials, vol. ‎‎113, p. 108264, 2021.‎

‎[46]‎ A. M. Khudhair, M. H. Mohammed, F. N. Ajeel, ‎and S. H. Mohammed, "Enhancement the electronic and ‎optical properties of the graphene nanoflakes in the ‎present S impurities," Chemical Physics Impact, vol. 6, p. ‎‎100154, 2023.‎

‎[47]‎ A. O. Alaoui et al., "Theoretical prediction of ‎corrosion inhibition by ionic liquid derivatives: a DFT ‎and molecular dynamics approach," RSC advances, vol. ‎‎15, no. 16, pp. 12645-12652, 2025.‎

‎[48]‎ N. A. Khaled, M. A. Ibrahim, N. A. Mohamed, S. ‎A. Ahmed, and N. S. Ahmed, "DFT studies on N-(1-(2-‎bromobenzoyl)-4-cyano-1H-pyrazol-5-yl)," ‎Spectrochimica Acta Part A: Molecular and ‎Biomolecular Spectroscopy, vol. 323, p. 124864, 2024.‎

‎[49]‎ R. Boča, Ž. Rádiková, J. Štofko, B. Vranovičová, ‎and C. Rajnák, "Quantum chemical study of molecular ‎properties of small branched-chain amino acids in ‎water," Amino Acids, vol. 57, no. 1, p. 11, 2025.‎

‎[50]‎ R. Shankar, K. Senthilkumar, and P. Kolandaivel, ‎‎"Calculation of ionization potential and chemical ‎hardness: A comparative study of different methods," ‎International Journal of Quantum Chemistry, vol. 109, ‎no. 4, pp. 764-771, 2009.‎

‎[51]‎ R. K. Hebasur, V. V. Koppal, D. A. Yaraguppi, N. ‎B. Gummagol, R. Kusanur, and N. R. Patil, ‎‎"Comprehensive Analysis of a Chalcone Derivative as an ‎Anticancer Agent: Structural, Spectroscopic, DFT-Based ‎Computational, Electrochemical, and Pharmacological ‎Investigations," 2025.‎

‎[52]‎ H. Sujatha and M. Lavanya, "An insight to ‎HOMO LUMO aspects in corrosion applications," ‎Canadian Metallurgical Quarterly, vol. 62, no. 4, pp. 761-‎‎772, 2023.‎

‎[53]‎ V. K. Verma, M. Guin, B. Solanki, and R. C. ‎Singh, "Molecular structure, HOMO and LUMO studies ‎of Di (Hydroxybenzyl) diselenide by quantum chemical ‎investigations," Materials Today: Proceedings, vol. 49, ‎pp. 3200-3204, 2022.‎

‎[54]‎ M. Ríos‐Gutiérrez, A. Saz Sousa, and L. R. ‎Domingo, "Electrophilicity and nucleophilicity scales at ‎different DFT computational levels," Journal of Physical ‎Organic Chemistry, vol. 36, no. 7, p. e4503, 2023.‎

‎[55]‎ R. Pal and P. K. Chattaraj, "Electrophilicity ‎index revisited," Journal of Computational Chemistry, ‎vol. 44, no. 3, pp. 278-297, 2023.‎

‎[56]‎ K. H. Bardan, F. N. Ajeel, M. H. Mohammed, A. ‎M. Khudhair, and A. B. Ahmed, "DFT study of adsorption ‎properties of the ammonia on both pristine and Si-doped ‎graphene nanoflakes," Chemical Physics Impact, vol. 8, ‎p. 100561, 2024.‎

‎[57]‎ K. A. Ritter and J. W. Lyding, "The influence of ‎edge structure on the electronic properties of graphene ‎quantum dots and nanoribbons," Nature materials, vol. 8, ‎no. 3, pp. 235-242, 2009.‎

‎[58]‎ A. Sheely, B. Gifford, S. Tretiak, and A. Bishop, ‎‎"Tunable optical features of graphene quantum dots from ‎edge functionalization," The Journal of Physical ‎Chemistry C, vol. 125, no. 17, pp. 9244-9252, 2021.‎

‎[59]‎ R. G. Pearson, "Chemical hardness and density ‎functional theory," Journal of Chemical Sciences, vol. ‎‎117, no. 5, pp. 369-377, 2005.‎

‎[60]‎ S. Kaya and M. V. Putz, "Atoms-in-molecules’ ‎faces of chemical hardness by conceptual density ‎functional theory," Molecules, vol. 27, no. 24, p. 8825, ‎‎2022.‎

Downloads

Published

2025-12-28

Issue

Section

Articles

Categories

How to Cite

Hussein, D. . ., Nimar, F., & Ben Ahmed, A. . (2025). Tuning the Electronic and Chemical Properties of Graphene Quantum Dots via CO2 Adsorption: Insights from DFT Calculations. University of Thi-Qar Journal of Science, 12(2), 137-144. https://doi.org/10.32792/utq/utjsci/v12i2.1506