Eco-Friendly Synthesis of Nickel Oxide Nanoparticles Using Microtrichia perotitii DC Plant Extract: Characterization and Antibacterial Activity
Phyto-Mediated Route for Nickel Oxide Nanoparticle Synthesis Using Microtrichia perotitii DC Extract: Characterization and Antibacterial Activity
DOI:
https://doi.org/10.32792/utq/utjsci/v12i2.1503Keywords:
Green synthesis, Nickel Oxide, Nanoparticles, Microtrichia perotitii DC, CharacterizationAbstract
The growing demand for sustainable nanomaterials has intensified interest in green synthesis routes utilizing plant-derived biomolecules as reducing and stabilizing agents. This study reports, for the first time, the biosynthesis of nickel oxide nanoparticles (NiO NPs) using Microtrichia perotitii DC leaf extract, a medicinal plant rich in bioactive phytochemicals including flavonoids, alkaloids, tannins, phenolics, and saponins. Nickel (II) chloride hexahydrate served as the metal precursor, while the phytochemicals facilitated both nanoparticle formation and stabilization. The synthesized NiO NPs were comprehensively characterized using UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), and thermogravimetry/differential thermal analysis (TG/DTA). XRD analysis confirmed the formation of crystalline nanoparticles with an average crystallite size of 24 nm and a cubic bunsenite phase. FTIR spectroscopy revealed a characteristic Ni-O stretching vibration at 651 cm⁻¹, confirming successful NiO formation. SEM imaging showed irregular, agglomerated nanostructures, while TG/DTA analysis demonstrated good thermal stability with major decomposition occurring at 473°C, attributed to the removal of phytochemical residues. Antibacterial assays demonstrated strong inhibitory effects of the biosynthesized NiO NPs, particularly against Gram-positive bacteria, including Bacillus subtilis (18.8 ± 0.6 mm) and Staphylococcus aureus (19.6 ± 0.4 mm) at 100 µg/mL concentration. Although the activity was slightly lower than ciprofloxacin (5 µg/disc: 22.4 ± 0.5 mm and 23.1 ± 0.43 mm, respectively), it indicates significant antibacterial potential. Gram-negative strains exhibited comparatively lower sensitivity, likely due to their protective outer membrane barrier.
Received: 2025-10-20
Revised: 2025-11-27
Accepted: 2025-12-20
References
[1] I. Fatimah et al., “Synthesis and control of the morphology of SnO2 nanoparticles via various concentrations of Tinospora cordifolia stem extract and reduction methods,” Arabian Journal of Chemistry, vol. 15, no. 4, p. 103738, Feb. 2022, doi: 10.1016/j.arabjc.2022.103738.
[2] N.-D. Jaji, H. L. Lee, M. H. Hussin, H. M. Akil, M. R. Zakaria, and M. B. H. Othman, “Advanced nickel nanoparticles technology: From synthesis to applications,” Nanotechnology Reviews, vol. 9, no. 1, pp. 1456–1480, Jan. 2020, doi: 10.1515/ntrev-2020-0109.
[3] F. L. Jia, L. Z. Zhang, X. Y. Shang, and Y. Yang, “Non‐Aqueous Sol–Gel Approach towards the Controllable Synthesis of Nickel Nanospheres, Nanowires, and Nanoflowers,” Advanced Materials, vol. 20, no. 5, pp. 1050–1054, Feb. 2008, doi: 10.1002/adma.200702159.
[4] A. Kar, “Synthesis of Nano-Spherical nickel by templating hibiscus flower petals,” American Journal of Nanoscience and Nanotechnology, vol. 2, no. 2, p. 17, Jan. 2014, doi: 10.11648/j.nano.20140202.11.
[5] P. Laokul, V. Amornkitbamrung, S. Seraphin, and S. Maensiri, “Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution,” Current Applied Physics, vol. 11, no. 1, pp. 101–108, Jul. 2010, doi: 10.1016/j.cap.2010.06.027.
[6] R. Lefojane et al., “Green Synthesis of Nickel Oxide (NiO) Nanoparticles Using Spirostachys africana Bark Extract,” Asian Journal of Scientific Research, vol. 13, no. 4, pp. 284–291, Sep. 2020, doi: 10.3923/ajsr.2020.284.291.
[7] J. Moavi, F. Buazar, and M. H. Sayahi, “Algal magnetic nickel oxide nanocatalyst in accelerated synthesis of pyridopyrimidine derivatives,” Scientific Reports, vol. 11, no. 1, p. 6296, Mar. 2021, doi: 10.1038/s41598-021-85832-z.
[8] A. Mueez, S. Hussain, M. Ahmad, A. Raza, I. Ahmed, and M. Amjad, “GREEN SYNTHESIS OF NANOSILVER PARTICLES FROM PLANTS EXTRACT,” International Journal of Agriculture Environment and Bioresearch, vol. 07, no. 01, pp. 96–122, Jan. 2022, doi: 10.35410/ijaeb.2022.5703.
[9] N. S. Nosheen et al., “A review: Development of magnetic nano vectors for biomedical applications,” GSC Advanced Research and Reviews, vol. 8, no. 2, pp. 085–110, Aug. 2021, doi: 10.30574/gscarr.2021.8.2.0169.
[10] M. A. Rahman, R. Radhakrishnan, and R. Gopalakrishnan, “Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by co-precipitation method,” Journal of Alloys and Compounds, vol. 742, pp. 421–429, Jan. 2018, doi: 10.1016/j.jallcom.2018.01.298.
[11] L. M. Rossi, A. D. Quach, and Z. Rosenzweig, “Glucose oxidase?magnetite nanoparticle bioconjugate for glucose sensing,” Analytical and Bioanalytical Chemistry, vol. 380, no. 4, pp. 606–613, Sep. 2004, doi: 10.1007/s00216-004-2770-3.
[12] S. S. Sana et al., “Biogenesis and Application of nickel nanoparticles: A review,” Current Pharmaceutical Biotechnology, vol. 22, no. 6, pp. 808–822, Jan. 2021, doi: 10.2174/1389201022999210101235233.
[13] H. Shabbir and A. Muhammad, “A Review on Gold Nanoparticles (GNPs) and their Advancement in Cancer Therapy,” International Journal of Nanomaterials Nanotechnology and Nanomedicine, pp. 019–025, Jan. 2021, doi: 10.17352/2455-3492.000040.
[14] M. Shah, D. Fawcett, S. Sharma, S. Tripathy, and G. Poinern, “Green synthesis of metallic nanoparticles via biological entities,” Materials, vol. 8, no. 11, pp. 7278–7308, Oct. 2015, doi: 10.3390/ma8115377.
[15] S. Suresh et al., “Star fruit extract-mediated green synthesis of metal oxide nanoparticles,” Inorganic and Nano-Metal Chemistry, vol. 52, no. 2, pp. 173–180, Feb. 2021, doi: 10.1080/24701556.2021.1880437.
[16] M. Abdullahi, “Phytochemical Screening and Biological Studies of the Leaves of Microtrichia perotitii DC (Asteraceae),” European Journal of Medicinal Plants, vol. 1, no. 3, pp. 88–97, Jan. 2011, doi: 10.9734/ejmp/2011/188.
[17] S. Hussain et al., “Green synthesis of nickel oxide nanoparticles using Acacia nilotica leaf extracts and investigation of their electrochemical and biological properties,” Journal of Taibah University for Science, vol. 17, no. 1, Feb. 2023, doi: 10.1080/16583655.2023.2170162.
[18] A. Habtemariam and M. Oumer, “Plant extract mediated synthesis of nickel oxide nanoparticles,” Materials International, vol. 2, no. 2, pp. 205–209, Apr. 2020, doi: 10.33263/materials22.205209.
[19] A. A. Ezhilarasi, J. J. Vijaya, K. Kaviyarasu, M. Maaza, A. Ayeshamariam, and L. J. Kennedy, “Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells,” Journal of Photochemistry and Photobiology B Biology, vol. 164, pp. 352–360, Oct. 2016, doi: 10.1016/j.jphotobiol.2016.10.003.
[20] H. Gebreslassie and A. Eyasu, “Phytochemical screening of the leaves Calpurnia aurea (Ait.) benth extract,” International Journal of Clinical Chemistry and Laboratory Medicine, vol. 5, no. 4, Jan. 2019, doi: 10.20431/2455-7153.0504004.
[21] K. Ganesan, S. Kumar, P. Nair, N. Letha, and G. Banu, Phytochemical Screening of Different Solvent Extracts of Soap Berry (Phytolacca dodecandra L’ Herit.) - A Native Ethiopian Shrub, 2016.
[22] A. A. Ezhilarasi, J. J. Vijaya, K. Kaviyarasu, M. Maaza, A. Ayeshamariam, and L. J. Kennedy, “Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells,” Journal of Photochemistry and Photobiology B Biology, vol. 164, pp. 352–360, Oct. 2016, doi: 10.1016/j.jphotobiol.2016.10.003.
[23] S. T. B. Kazmi et al., “Phytochemical analysis and comprehensive evaluation of pharmacological potential of Artemisia brevifolia Wall. ex DC,” Saudi Pharmaceutical Journal, vol. 30, no. 6, pp. 793–814, Mar. 2022, doi: 10.1016/j.jsps.2022.03.012.
[24] I. A. Mohammed, M. Ahmed, R. Ikram, M. Muddassar, M. A. Qadir, and K. B. Awang, “Synthesis of 1,3-benzoxazines based on 2,4,4-trimethyl-7,2’,4’-trihydroxy flavan: antibacterial, anti-inflammatory, cyclooxygenase-2 inhibition and molecular modelling studies,” Letters in Drug Design & Discovery, vol. 16, no. 1, pp. 58–65, Apr. 2018, doi: 10.2174/1570180815666180420100922.
[25] S. Ahmed, N. Saifullah, M. Ahmad, B. L. Swami, and S. Ikram, “Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract,” Journal of Radiation Research and Applied Sciences, vol. 9, no. 1, pp. 1–7, Jun. 2015, doi: 10.1016/j.jrras.2015.06.006.
[26] H. Kumar and R. Rani, “Structural and optical characterization of ZNO nanoparticles synthesized by microemulsion route,” International Letters of Chemistry Physics and Astronomy, vol. 19, pp. 26–36, Oct. 2013, doi: 10.18052/www.scipress.com/ilcpa.19.26
[27] M. Alagiri, S. Ponnusamy, and C. Muthamizhchelvan, “Synthesis and characterization of NiO nanoparticles by sol–gel method,” Journal of Materials Science Materials in Electronics, vol. 23, no. 3, pp. 728–732, Aug. 2011, doi: 10.1007/s10854-011-0479-6.
[28] S. G. Firisa, G. G. Muleta, and A. A. Yimer, “Synthesis of Nickel Oxide Nanoparticles and Copper-Doped Nickel Oxide Nanocomposites Using Phytolacca dodecandra L’Herit Leaf Extract and Evaluation of Its Antioxidant and Photocatalytic Activities,” ACS Omega, vol. 7, no. 49, pp. 44720–44732, Dec. 2022, doi: 10.1021/acsomega.2c04042.
[29] M. Ramesh, “N and Fe doped NiO nanoparticles for enhanced photocatalytic degradation of azo dye methylene blue in the presence of visible light,” SN Applied Sciences, vol. 3, no. 10, Sep. 2021, doi: 10.1007/s42452-021-04803-1.
[30] S. J. Musevi, A. Aslani, H. Motahari, and H. Salimi, “Offer a novel method for size appraise of NiO nanoparticles by PL analysis: Synthesis by sonochemical method,” Journal of Saudi Chemical Society, vol. 20, no. 3, pp. 245–252, Jul. 2012, doi: 10.1016/j.jscs.2012.06.009.
[31] R. Lefojane et al., “Green Synthesis of Nickel Oxide (NiO) Nanoparticles Using Spirostachys africana Bark Extract,” Asian Journal of Scientific Research, vol. 13, no. 4, pp. 284–291, Sep. 2020, doi: 10.3923/ajsr.2020.284.291.
[32] S. U. R et al., “Biogenic Synthesis of NiO Nanoparticles Using Areca catechu Leaf Extract and Their Antidiabetic and Cytotoxic Effects,” Molecules, vol. 26, no. 9, p. 2448, Apr. 2021, doi: 10.3390/molecules26092448.
[33] M. Sepahvand, F. Buazar, and M. H. Sayahi, “Novel marine‐based gold nanocatalyst in solvent‐free synthesis of polyhydroquinoline derivatives: Green and sustainable protocol,” Applied Organometallic Chemistry, vol. 34, no. 12, Sep. 2020, doi: 10.1002/aoc.6000.
[34] G. Basak, D. Das, and N. Das, “Dual Role of Acidic Diacetate Sophorolipid as Biostabilizer for ZnO Nanoparticle Synthesis and Biofunctionalizing Agent Against Salmonella enterica and Candida albicans,” Journal of Microbiology and Biotechnology, vol. 24, no. 1, pp. 87–96, Jan. 2014, doi: 10.4014/jmb.1307.07081.
[35] I. Fatimah, R. Y. Pradita, and A. Nurfalinda, “Plant extract mediated of ZNO nanoparticles by using ethanol extract of mimosa pudica leaves and coffee powder,” Procedia Engineering, vol. 148, pp. 43–48, Jan. 2016, doi: 10.1016/j.proeng.2016.06.483.
[36] Bindhu and M. Umadevi, “Antibacterial activities of green synthesized gold nanoparticles,” Materials Letters, vol. 120, pp. 122–125, Jan. 2014, doi: 10.1016/j.matlet.2014.01.108.
[37] T. Muthukumar, N. Sudhakumari, B. Sambandam, A. Aravinthan, T. P. Sastry, and J.-H. Kim, “Green synthesis of gold nanoparticles and their enhanced synergistic antitumor activity using HepG2 and MCF7 cells and its antibacterial effects,” Process Biochemistry, vol. 51, no. 3, pp. 384–391, Jan. 2016, doi: 10.1016/j.procbio.2015.12.017.
[38] H. K. Allen, J. Donato, H. H. Wang, K. A. Cloud-Hansen, J. Davies, and J. Handelsman, “Call of the wild: antibiotic resistance genes in natural environments,” Nature Reviews Microbiology, vol. 8, no. 4, pp. 251–259, Mar. 2010, doi: 10.1038/nrmicro2312.
[39] J. a. H. Romaniuk and L. Cegelski, “Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR,” Philosophical Transactions of the Royal Society B Biological Sciences, vol. 370, no. 1679, p. 20150024, Sep. 2015, doi: 10.1098/rstb.2015.0024.
[40] D. a. C. Heesterbeek et al., “Publisher Correction: Complement-dependent outer membrane perturbation sensitizes Gram-negative bacteria to Gram-positive specific antibiotics,” Scientific Reports, vol. 9, no. 1, p. 7841, May 2019, doi: 10.1038/s41598-019-43208-4.
[41] J. Davies and D. Davies, “Origins and evolution of antibiotic resistance,” Microbiology and Molecular Biology Reviews, vol. 74, no. 3, pp. 417–433, Aug. 2010, doi: 10.1128/mmbr.00016-10.
[42] J. Sukumaran, M. Priya, R. Venkatesan, K. Sathiasivan, M. R. Khan, and S. Kim, “Green Synthesis of Nickel Oxide Nanoparticles Using Leaf Extract of Aegle marmelos and Their Antibacterial, Anti‐Oxidant, and In Vitro Cytotoxicity Activity,” Microscopy Research and Technique, vol. 88, no. 10, pp. 2830–2842, Jul. 2025, doi: 10.1002/jemt.70054.
[43] A. Kanchana, S. Devarajan, and S. R. Ayyappan, “Green synthesis and characterization of palladium nanoparticles and its conjugates from solanum trilobatum leaf extract,” Nano-Micro Letters, vol. 2, no. 3, pp. 169–176, Sep. 2010, doi: 10.1007/bf03353637.
[44] R. Lefojane et al., “Green Synthesis of Nickel Oxide (NiO) Nanoparticles Using Spirostachys africana Bark Extract,” Asian Journal of Scientific Research, vol. 13, no. 4, pp. 284–291, Sep. 2020, doi: 10.3923/ajsr.2020.284.291.
[45] B. J. Landi, H. J. Ruf, C. M. Evans, C. D. Cress, and R. P. Raffaelle, “Purity assessment of Single-Wall carbon nanotubes, using optical absorption spectroscopy,” The Journal of Physical Chemistry B, vol. 109, no. 20, pp. 9952–9965, Apr. 2005, doi: 10.1021/jp044990c.
[46] S. T. Fardood, A. Ramazani, and S. Moradi, “A novel green synthesis of nickel oxide nanoparticles using arabic gum,” Chemistry Journal of Moldova, vol. 12, no. 1, pp. 115–118, May 2017, doi: 10.19261/cjm.2017.383.
[47] V. Biju and M. A. Khadar, “Electronic structure of nanostructured nickel oxide using NI 2P XPS analysis,” Journal of Nanoparticle Research, vol. 4, no. 3, pp. 247–253, Jun. 2002, doi: 10.1023/a:1019949805751.
[48] S. Farooq, M. Habib, O. Cardozo, K. Ullah, A. K. Pandey, and Z. Said, “Exploring the impact of particle stability, size, and morphology on nanofluid thermal conductivity: A comprehensive review for energy applications,” Advances in Colloid and Interface Science, vol. 341, p. 103495, Mar. 2025, doi: 10.1016/j.cis.2025.103495.
[49] K. Deka et al., “Understanding the mechanism underlying the green synthesis of metallic nanoparticles using plant extract(s) with special reference to Silver, Gold, Copper and Zinc oxide nanoparticles,” Hybrid Advances, vol. 9, p. 100399, Feb. 2025, doi: 10.1016/j.hybadv.2025
Downloads
Published
License
Copyright (c) 2025 University of Thi-Qar Journal of Science

This work is licensed under a Creative Commons Attribution 4.0 International License.











