The relationship between TLR4 gene polymorphism (rs7873784) and urinary tract infections caused by multidrug-resistant bacteria among Iraqi patients
DOI:
https://doi.org/10.32792/utq/utjsci/v12i2.1491Keywords:
, Multiple drug resistance, TLR4, UTIAbstract
Toll-Like Receptor 4 (TLR4) is a pattern recognition receptor (PRR) that identifies pathogen-associated molecular patterns (PAMPs) molecules found on the surface of bacteria, viruses, and other pathogens. This study aimed to evaluate the relationship between functional gene polymorphisms (TLR4-rs7873784) and susceptibility to multidrug-resistant (MDR) bacteria in urinary tract infections (UTIs). A total of 350 urine samples were collected from males and females aged 10–75 years at Al-Rifae General Hospital in Thi-Qar province, southern Iraq, between July 2022 and January 2023. All bacterial isolates were identified biochemically and by VITEK-2 system then confirmed with 16SrRNA gene. Resistance genes were detected using bacterial colonies in a PCR test. Tetra-ARMS-PCR was used to detect TLR4 gene polymorphism (rs7873784).150 samples (42.9%) showed positive bacterial growth, while 200 samples (57.1%) were culture-negative. The samples that were positive for bacterial growth were 150 samples, including 30 XDR samples, 20 sensitive to antibiotics, and 100 MDR samples, pathogens isolated MDR included Escherichia coli (44%), Staphylococcus aureus (33%), Klebsiella pneumoniae (10%), and Proteus mirabilis (13%). Regarding resistance genes: BlaCTX-M was detected in 81.8% of E. coli, 100% of K. pneumoniae, and 30.8% of P. mirabilis; BlaSHV in 29.5% of E. coli, and 100% of both K. pneumoniae and P. mirabilis; BlaAMPC in 90.9% of E. coli, 100% of K. pneumonia, and 30.8% of P. mirabilis; and BlaTEM in all Gram-negative isolates.
Received: 2025-09-24
Revised: 2025-11-12
Accepted: 2025-12-13
References
[1] A. L. Flores-Mireles, J. N. Walker, M. Caparon, and S. J. Hultgren, “Urinary tract infections: epidemiology, mechanisms of infection and treatment options, Nature Reviews Microbiology, vol. 13, no. 5, pp. 269–284, 2015.
[2] P. Sargiary, L. Baro, G. Choudhry, and L. Saikia, “Bacteriological profile and antimicrobial susceptibility pattern of community acquired urinary tract infection in children: a tertiary care experience,” J. Dental Med. Sci., vol. 15, no. 6, pp. 61–65, 2016.
[3] A. P. Magiorakos, A. Srinivasan, R. B. Carey, Y. Carmeli, M. E. Falagas, C. G. Giske, D. L. Monnet et al., “Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance,” Clin. Microbiol. Infect., vol. 18, no. 3, pp. 268–281, 2012.
[4] S. S. Kadri, Y. L. Lai, S. Warner, J. R. Strich, A. Babiker, E. E. Ricotta, J. Adjemian et al., “Inappropriate empirical antibiotic therapy for bloodstream infections based on discordant in-vitro susceptibilities: a retrospective cohort analysis of prevalence, predictors, and mortality risk in US hospitals,” Lancet Infect. Dis., vol. 21, no. 2, pp. 241–251, 2021.
[5] Z. Naziri, A. Derakhshandeh, A. Soltani Borchaloee, M. Poormaleknia, and N. Azimzadeh, “Treatment failure in urinary tract infections: a warning witness for virulent multi-drug resistant ESBL-producing Escherichia coli,” Infect. Drug Resist., pp. 1839–1850, 2020.
[6] W. Adamus-Białek, A. Baraniak, M. Wawszczak, S. Głuszek, B. Gad, K. Wróbel, and P. Parniewski, “The genetic background of antibiotic resistance among clinical uropathogenic Escherichia coli strains,” Mol. Biol. Rep., vol. 45, pp. 1055–1065, 2018.
[7] M. K. Vidya, V. G. Kumar, V. Sejian, M. Bagath, G. Krishnan, and R. Bhatta, “Toll-like receptors: significance, ligands, signaling pathways, and functions in mammals,” *Int. Rev. Immunol.*, vol. 37, no. 1, pp. 20–36, 2018.**
[8] M. T. Islam, A. R. U. Alam, N. Sakib, M. S. Hasan, T. Chakrovarty, M. Tawyabur, and M. Anwar Hossain, “A rapid and cost‐effective multiplex ARMS‐PCR method for the simultaneous genotyping of the circulating SARS‐CoV‐2 phylogenetic clades,” J. Med. Virol., vol. 93, no. 5, pp. 2962–2970, 2021.
[9] M. Komijani, K. Shahin, E. I. Azhar, And M. Bahram, “Designing Pcr Primers For The Amplification-Refractory Mutation System,” In Pcr Primer Design, Pp. 93–99, 2022.
[10] Y. Zhang and C. Liang, “Innate recognition of microbial-derived signals in immunity and inflammation,” Sci. China Life Sci., vol. 59, pp. 1210–1217, 2016.
[11] J. Wang, C. Yang, Z. Liu, X. Li, M. Liu, Y. Wang, and N. Sun, “Association of the TLR4 gene with depressive symptoms and antidepressant efficacy in major depressive disorder,” Neurosci. Lett., vol. 736, p. 135292, 2019.
[12] Addgene, “How to run an agarose gel,” Addgene Protocols,2025.[Online].Available:https://www.addgene.org/protocols/gel-electrophoresis.
[13] W. S. Bush and J. H. Moore, "Genome-wide association studies," PLoS Computational Biology, vol. 8, no. 12, p. e1002822, 2012. doi: 10.1371/journal.pcbi.1002822.
[14] S. Biset, F. Moges, D. Endalamaw, and S. Eshetie, “Multi-drug resistant and extended-spectrum β-lactamases producing bacterial uropathogens among pregnant women in Northwest Ethiopia,” Annals of Clinical Microbiology and Antimicrobials, vol. 19, no. 1, p. 1, 2020.
[15] M. J. A. Muqdad and A. L-Rikabi, “Molecular study for the isolation and identification of bacteria causing urinary tract infection in pregnant women and the identification of antibiotic resistance genes in Southern Iraq,” 2022.
[16] D. S. Al-Hashmay, S. A. Hassan Alibraheem, and K. R. Hussein, “Molecular detection of Escherichia coli causing urinary tract infections among pregnant women at Thi-Qar province, Iraq,” Indian Journal of Forensic Medicine and Toxicology, vol. 15, no. 2, p. 1275, 2021.
[17] T. J. Foster, “Antibiotic resistance in Staphylococcus aureus: Current status and future prospects,” FEMS Microbiology Reviews, vol. 41, no. 3, pp. 430–449, 201
[18] I. Simon-Oke, O. Odeyemi, and O. J. Afolabi, “Incidence of urinary tract infections and antimicrobial susceptibility pattern among pregnant women in Akure, Nigeria,” Scientific African, vol. 6, p. e00151, 2019.
[19] Y. Jin, S. Qiu, N. Shao, and J. Zheng, “Association of toll-like receptor gene polymorphisms and its interaction with HPV infection in determining the susceptibility of cervical cancer in Chinese Han population,” Mammalian Genome, vol. 28, pp. 213–219, 2017.
[20] W. S. Al-Wazni and B. S. Hadi, “Antivirulence effects of pomegranate peel extracts on most common urinary tract infection pathogens in pregnant women,” J. Contemp. Med. Sci., vol. 1, no. 4, pp. 7–12, 2015.
[21] K. Abass, S. K. Adanu, and S. Agyemang, “Peri-urbanisation and loss of arable land in Kumasi Metropolis in three decades: Evidence from remote sensing image analysis,” Land Use Policy, vol. 72, pp. 470–479, 2018.
[22] M. J. Alghizzi, M. Alansari, and A. Shami, “The prevalence of Staphylococcus aureus and methicillin resistant Staphylococcus aureus in processed food samples in Riyadh, Saudi Arabia,” J. Pure Appl. Microbiol., vol. 15, no. 1, 2021.
[23] H. Khan, A. Ahmad, and A. Malik, “Molecular mechanisms of methicillin resistance in Staphylococcus aureus and therapeutic strategies,” Frontiers in Microbiology, vol. 13, p. 856873, 2022.
[24] T. Zmantar, K. Chaieb, F. Ben Abdallah, A. Ben Kahla-Nakbi, A. Ben Hassen, K. Mahdouani, and A. Bakhrouf, “Multiplex PCR detection of the antibiotic resistance genes in Staphylococcus aureus strains isolated from auricular infections,” Folia Microbiol., vol. 53, pp. 357–362, 2008.
[25] H. Shi, F. Sun, J. Chen, Q. Ou, W. Feng, X. Yong, and P. Xia, “Epidemiology of CTX-M-type extended-spectrum beta-lactamase (ESBL)-producing nosocomial Escherichia coli infection in China,” Ann. Clin. Microbiol. Antimicrob., vol. 14, no. 1, pp. 1–5, 2015.
[26] S. A. Al-Sheboul, G. S. Al-Madi, B. Brown, and W. A. Hayajneh, “Prevalence of Extended-Spectrum β-Lactamases in multidrug-resistant Klebsiella pneumoniae isolates in Jordanian hospitals,” J. Epidemiol. Glob. Health, pp. 1–11, 2023.
[27] A. A. Mwakyoma, B. R. Kidenya, C. A. Minja, M. F. Mushi, A. Sandeman, W. Sabiti, and S. E. Mshana, “Allele distribution and phenotypic resistance to ciprofloxacin and gentamicin among extended-spectrum β-lactamase-producing Escherichia coli isolated from the urine, stool, animals, and environments of patients with presumptive urinary tract infection in Tanzania,” Front. Antibiotics, vol. 2, p. 1164016, 2023.
[28] M. Shaaban, S. L. Elshaer, and O. A. Abd El-Rahman, “Prevalence of extended-spectrum β-lactamases, AmpC, and carbapenemases in Proteus mirabilis clinical isolates,” BMC Microbiol., vol. 22, no. 1, p. 247, 2022.
[29] F. O. Enogiomwan and I. N. Ibeh, “Forward and reverse characterization of the CTX-M genes associated with multi-drug resistant Escherichia coli isolated from pregnant mothers presenting with asymptomatic urinary tract infection in Benin City, Nigeria,” Acta Sci. Microbiol., vol. 1, no. 1, pp. 21–24, 2018.
[30] N. S. Lhwak and Y. A. Abbas, “Detection of extended spectrum β–lactamase gene CTX-M-1 in Escherichia coli and Klebsiella pneumoniae isolated from urinary tract infection of pregnant women in Al-Nassyriah City,” Univ. Thi-Qar J. Sci., vol. 2, no. 4, pp. 92–96, 2018.
[31] M. Shaaban, S. L. Elshaer, and O. A. Abd El-Rahman, “Prevalence of extended-spectrum β-lactamases, AmpC, and carbapenemases in Proteus mirabilis clinical isolates,” BMC Microbiol., vol. 22, no. 1, p. 247, 2022.
[32] Z. K. Lawi, M. B. S. Al-Shuhaib, I. B. Amara, and A. H. Alkhammas, “Two missense variants of the epidermal growth factor receptor gene are associated with non-small cell lung carcinoma in the Iraqi population,” 2022
[33] K. V. Korneev, E. N. Sviriaeva, N. A. Mitkin, A. M. Gorbacheva, A. N. Uvarova, A. S. Ustiugova, and D. V. Kuprash, “Minor C allele of the SNP rs7873784 associated with rheumatoid arthritis and type-2 diabetes mellitus binds PU.1 and enhances TLR4 expression,” Biochim. Biophys. Acta (BBA) - Mol. Basis Dis., vol. 1866, no. 3, p. 165626, 2020.
[34] F. Wagenlehner, L. Nicolle, R. Bartoletti, A. C. Gales, L. Grigoryan, H. Huang, and S. J. Lee, “A global perspective on improving patient care in uncomplicated urinary tract infection: expert consensus and practical guidance,” J. Glob. Antimicrob. Resist., vol. 28, pp. 18–29, 2022.
[35] A. O. Degtyareva, E. V. Antontseva, and T. I. Merkulova, “Regulatory SNPs: altered transcription factor binding sites implicated in complex traits and diseases,” Int. J. Mol. Sci., vol. 22, no. 12, p. 6454, 2021.
[36] Z. Yang, W. Liu, X. Wan, R. Liu, and Y. Zhang, “Association of Toll-like receptor 4 rs7873784 G/C polymorphism with rheumatoid arthritis risk in a Chinese population,” Immunol. Investig., vol. 51, no. 3, pp. 660–669, 2022.
[37] K. V. Korneev, E. N. Sviriaeva, N. A. Mitkin, A. M. Gorbacheva, A. N. Uvarova, A. S. Ustiugova, and D. V. Kuprash, “Minor C allele of the SNP rs7873784 associated with rheumatoid arthritis and type-2 diabetes mellitus binds PU.1 and enhances TLR4 expression,” Biochim. Biophys. Acta (BBA) – Mol. Basis Dis., vol. 1866, no. 3, p. 165626, 2020.
[38] D. Varshney, S. Singh, E. Sinha, K. K. Mohanty, S. Kumar, S. K. Barik, and P. Katara, “Systematic review and meta-analysis of human Toll-like receptors genetic polymorphisms for susceptibility to tuberculosis infection,” Cytokine, vol. 152, p. 155791, 2022.
[39] J. Wang, C. Yang, Z. Liu, X. Li, M. Liu, Y. Wang, and N. Sun, “Association of the TLR4 gene with depressive symptoms and antidepressant efficacy in major depressive disorder,” Neurosci. Lett., vol. 736, p. 135292, 2020.
[40] F. R. Leite, C. Enevold, K. Bendtzen, V. Baelum, and R. López, “Pattern recognition receptor polymorphisms in early periodontitis,” J. Periodontol., vol. 90, no. 6, pp. 647–654, 2019.
[41] Y. Jin, S. Qiu, N. Shao, and J. Zheng, “Association of toll-like receptor gene polymorphisms and its interaction with HPV infection in determining the susceptibility of cervical cancer in Chinese Han population,” Mamm. Genome, vol. 28, pp. 213–219, 2017.
[42] X. H. Wang, A. G. Ma, X. X. Han, L. Chen, H. Liang, A. Litifu, and F. X. Xue, “Relationship between Toll-like receptor 4 and type-2 diabetes mellitus complicated by tuberculosis,” Int. J. Tuberc. Lung Dis., vol. 21, no. 8, pp. 910–915, 2017.
[43] I. M. Shui, J. R. Stark, K. L. Penney, F. R. Schumacher, M. M. Epstein, M. J. Pitt, and L. A. Mucci, “Genetic variation in the toll-like receptor 4 and prostate cancer incidence and mortality,” Prostate, vol. 72, no. 2, pp. 209–216, 2012.
[44] K. K. Tsilidis, K. J. Helzlsouer, M. W. Smith, V. Grinberg, J. Hoffman-Bolton, S. L. Clipp, and E. A. Platz, “Association of common polymorphisms in IL10, and in other genes related to inflammatory response and obesity with colorectal cancer,” Cancer Causes Control, vol. 20, pp. 1739–1751, 2009.
[45] X. Yin, T. Hou, Y. Liu, J. Chen, Z. Yao, C. Ma, and L. Wei, “Association of Toll-like receptor 4 gene polymorphism and expression with urinary tract infection types in adults,” PLoS One, vol. 5, no. 12, p. e14223, 2010.
[46] B. H. Mao, Y. F. Chang, J. Scaria, C. C. Chang, L. W. Chou, N. Tien, and C. H. Teng, “Identification of Escherichia coli genes associated with urinary tract infections,” J. Clin. Microbiol., vol. 50, no. 2, pp. 449–456, 2012.
[47] D. K. Govindarajan, N. Viswalingam, Y. Meganathan, and K. Kandaswamy, “Adherence patterns of Escherichia coli in the intestine and its role in pathogenesis,” Med. Microecol., vol. 5, p. 100025, 2020.
[48] V. Ballén, V. Cepas, C. Ratia, Y. Gabasa, and S. M. Soto, “Clinical Escherichia coli: from biofilm formation to new antibiofilm strategies,” Microorganisms, vol. 10, no. 6, p. 1103, 2022.
Downloads
Published
License
Copyright (c) 2025 University of Thi-Qar Journal of Science

This work is licensed under a Creative Commons Attribution 4.0 International License.











