The relationship between TLR4 gene polymorphism (rs7873784) and urinary tract infections caused by multidrug-resistant bacteria among Iraqi patients

Authors

  • Akram Radhi Al-Rifae General Hospital, Thi-Qar province, Iraq.‎
  • SEÇİL AKILLI ŞİMŞEK ‎ College of Science , Çankırı karatekin university‏ ‏‎, Çankırı ,Turkey

DOI:

https://doi.org/10.32792/utq/utjsci/v12i2.1491

Keywords:

, Multiple drug resistance, TLR4, UTI

Abstract

Toll-Like Receptor 4 (TLR4) is a pattern recognition receptor (PRR) that identifies pathogen-associated molecular patterns (PAMPs) molecules found on the surface of bacteria, viruses, and other pathogens. This study aimed to evaluate the relationship between functional gene polymorphisms (TLR4-rs7873784) and susceptibility to multidrug-resistant (MDR) bacteria in urinary tract infections (UTIs). A total of 350 urine samples were collected from males and females aged 10–75 years at Al-Rifae General Hospital in Thi-Qar province, southern Iraq, between July 2022 and January 2023. All bacterial isolates were identified biochemically and by VITEK-2 system then confirmed with 16SrRNA gene. Resistance genes were detected using bacterial colonies in a PCR test. Tetra-ARMS-PCR was used to detect TLR4 gene polymorphism (rs7873784).150 samples (42.9%) showed positive bacterial growth, while 200 samples (57.1%) were culture-negative. The samples that were positive for bacterial growth were 150 samples, including 30 XDR samples, 20 sensitive to antibiotics, and 100 MDR samples, pathogens isolated MDR included Escherichia coli (44%), Staphylococcus aureus (33%), Klebsiella pneumoniae (10%), and Proteus mirabilis (13%). Regarding resistance genes: BlaCTX-M was detected in 81.8% of E. coli, 100% of K. pneumoniae, and 30.8% of P. mirabilis; BlaSHV in 29.5% of E. coli, and 100% of both K. pneumoniae and P. mirabilis; BlaAMPC in 90.9% of E. coli, 100% of K. pneumonia, and 30.8% of P. mirabilis; and BlaTEM in all Gram-negative isolates. 

References

‎[1] A. L. Flores-Mireles, J. N. Walker, M. Caparon, and S. ‎J. Hultgren, “Urinary tract infections: epidemiology, ‎mechanisms of infection and treatment options, ‎Nature Reviews Microbiology, vol. 13, no. 5, pp. ‎‎269–284, 2015.‎

‎ [2] P. Sargiary, L. Baro, G. Choudhry, and L. Saikia, ‎‎“Bacteriological profile and antimicrobial ‎susceptibility pattern of community acquired ‎urinary tract infection in children: a tertiary care ‎experience,” J. Dental Med. Sci., vol. 15, no. 6, pp. ‎‎61–65, 2016.‎

‎ [3] A. P. Magiorakos, A. Srinivasan, R. B. Carey, Y. ‎Carmeli, M. E. Falagas, C. G. Giske, D. L. Monnet et ‎al., “Multidrug-resistant, extensively drug-resistant ‎and pandrug-resistant bacteria: an international ‎expert proposal for interim standard definitions for ‎acquired resistance,” Clin. Microbiol. Infect., vol. ‎‎18, no. 3, pp. 268–281, 2012.‎

‎[4] S. S. Kadri, Y. L. Lai, S. Warner, J. R. Strich, A. Babiker, ‎E. E. Ricotta, J. Adjemian et al., “Inappropriate ‎empirical antibiotic therapy for bloodstream ‎infections based on discordant in-vitro ‎susceptibilities: a retrospective cohort analysis of ‎prevalence, predictors, and mortality risk in US ‎hospitals,” Lancet Infect. Dis., vol. 21, no. 2, pp. ‎‎241–251, 2021.‎

‎[5] Z. Naziri, A. Derakhshandeh, A. Soltani Borchaloee, M. ‎Poormaleknia, and N. Azimzadeh, “Treatment ‎failure in urinary tract infections: a warning witness ‎for virulent multi-drug resistant ESBL-producing ‎Escherichia coli,” Infect. Drug Resist., pp. 1839–‎‎1850, 2020.‎

‎[‎‏6‏‎] W. Adamus-Białek, A. Baraniak, M. Wawszczak, S. ‎Głuszek, B. Gad, K. Wróbel, and P. Parniewski, ‎‎“The genetic background of antibiotic resistance ‎among clinical uropathogenic Escherichia coli ‎strains,” Mol. Biol. Rep., vol. 45, pp. 1055–1065, ‎‎2018.‎

‎[7] M. K. Vidya, V. G. Kumar, V. Sejian, M. Bagath, G. ‎Krishnan, and R. Bhatta, “Toll-like receptors: ‎significance, ligands, signaling pathways, and ‎functions in mammals,” *Int. Rev. Immunol.*, vol. ‎‎37, no. 1, pp. 20–36, 2018.**‎

‎[8] M. T. Islam, A. R. U. Alam, N. Sakib, M. S. Hasan, T. ‎Chakrovarty, M. Tawyabur, and M. Anwar Hossain, ‎‎“A rapid and cost‐effective multiplex ARMS‐‎PCR method for the simultaneous genotyping of the ‎circulating SARS‐CoV‐2 phylogenetic clades,” ‎J. Med. Virol., vol. 93, no. 5, pp. 2962–2970, 2021.‎

‎[9] M. Komijani, K. Shahin, E. I. Azhar, And M. Bahram, ‎‎“Designing Pcr Primers For The Amplification-‎Refractory Mutation System,” In Pcr Primer Design, ‎Pp. 93–99, 2022.‎

‎[10] Y. Zhang and C. Liang, “Innate recognition of ‎microbial-derived signals in immunity and ‎inflammation,” Sci. China Life Sci., vol. 59, pp. ‎‎1210–1217, 2016.‎

‎[1‎‏1‏‎] J. Wang, C. Yang, Z. Liu, X. Li, M. Liu, Y. Wang, and ‎N. Sun, “Association of the TLR4 gene with ‎depressive symptoms and antidepressant efficacy in ‎major depressive disorder,” Neurosci. Lett., vol. ‎‎736, p. 135292, 2019.‎

‎[12] Addgene, “How to run an agarose gel,” Addgene ‎Protocols,2025.[Online].Available:https://www.add‎gene.org/protocols/gel-electrophoresis.‎

‎[13] W. S. Bush and J. H. Moore, "Genome-wide ‎association studies," PLoS Computational Biology, ‎vol. 8, no. 12, p. e1002822, 2012. doi: ‎‎10.1371/journal.pcbi.1002822.‎

‎[14] S. Biset, F. Moges, D. Endalamaw, and S. Eshetie, ‎‎“Multi-drug resistant and extended-spectrum β-‎lactamases producing bacterial uropathogens among ‎pregnant women in Northwest Ethiopia,” Annals of ‎Clinical Microbiology and Antimicrobials, vol. 19, ‎no. 1, p. 1, 2020.‎

‎[15] M. J. A. Muqdad and A. L-Rikabi, “Molecular study ‎for the isolation and identification of bacteria ‎causing urinary tract infection in pregnant women ‎and the identification of antibiotic resistance genes ‎in Southern Iraq,” 2022.‎

‎[16] D. S. Al-Hashmay, S. A. Hassan Alibraheem, and K. R. ‎Hussein, “Molecular detection of Escherichia coli ‎causing urinary tract infections among pregnant ‎women at Thi-Qar province, Iraq,” Indian Journal of ‎Forensic Medicine and Toxicology, vol. 15, no. 2, p. ‎‎1275, 2021.‎

‎[17] T. J. Foster, “Antibiotic resistance in Staphylococcus ‎aureus: Current status and future prospects,” FEMS ‎Microbiology Reviews, vol. 41, no. 3, pp. 430–449, ‎‎201‎

‎[18] I. Simon-Oke, O. Odeyemi, and O. J. Afolabi, ‎‎“Incidence of urinary tract infections and ‎antimicrobial susceptibility pattern among pregnant ‎women in Akure, Nigeria,” Scientific African, vol. 6, ‎p. e00151, 2019.‎

‎[19] Y. Jin, S. Qiu, N. Shao, and J. Zheng, “Association of ‎toll-like receptor gene polymorphisms and its ‎interaction with HPV infection in determining the ‎susceptibility of cervical cancer in Chinese Han ‎population,” Mammalian Genome, vol. 28, pp. 213–‎‎219, 2017.‎

‎[20] W. S. Al-Wazni and B. S. Hadi, “Antivirulence ‎effects of pomegranate peel extracts on most ‎common urinary tract infection pathogens in ‎pregnant women,” J. Contemp. Med. Sci., vol. 1, no. ‎‎4, pp. 7–12, 2015.‎

‎[21] K. Abass, S. K. Adanu, and S. Agyemang, “Peri-‎urbanisation and loss of arable land in Kumasi ‎Metropolis in three decades: Evidence from remote ‎sensing image analysis,” Land Use Policy, vol. 72, ‎pp. 470–479, 2018.‎

‎[22] M. J. Alghizzi, M. Alansari, and A. Shami, “The ‎prevalence of Staphylococcus aureus and ‎methicillin resistant Staphylococcus aureus in ‎processed food samples in Riyadh, Saudi Arabia,” J. ‎Pure Appl. Microbiol., vol. 15, no. 1, 2021.‎

‎[‎‏2‏‎3] H. Khan, A. Ahmad, and A. Malik, “Molecular ‎mechanisms of methicillin resistance in ‎Staphylococcus aureus and therapeutic strategies,” ‎Frontiers in Microbiology, vol. 13, p. 856873, 2022.‎

‎[24] T. Zmantar, K. Chaieb, F. Ben Abdallah, A. Ben ‎Kahla-Nakbi, A. Ben Hassen, K. Mahdouani, and A. ‎Bakhrouf, “Multiplex PCR detection of the ‎antibiotic resistance genes in Staphylococcus ‎aureus strains isolated from auricular infections,” ‎Folia Microbiol., vol. 53, pp. 357–362, 2008.‎

‎[25] H. Shi, F. Sun, J. Chen, Q. Ou, W. Feng, X. Yong, and ‎P. Xia, “Epidemiology of CTX-M-type extended-‎spectrum beta-lactamase (ESBL)-producing ‎nosocomial Escherichia coli infection in China,” ‎Ann. Clin. Microbiol. Antimicrob., vol. 14, no. 1, pp. ‎‎1–5, 2015.‎

‎[26] S. A. Al-Sheboul, G. S. Al-Madi, B. Brown, and W. A. ‎Hayajneh, “Prevalence of Extended-Spectrum β-‎Lactamases in multidrug-resistant Klebsiella ‎pneumoniae isolates in Jordanian hospitals,” J. ‎Epidemiol. Glob. Health, pp. 1–11, 2023.‎

‎[27] A. A. Mwakyoma, B. R. Kidenya, C. A. Minja, M. F. ‎Mushi, A. Sandeman, W. Sabiti, and S. E. Mshana, ‎‎“Allele distribution and phenotypic resistance to ‎ciprofloxacin and gentamicin among extended-‎spectrum β-lactamase-producing Escherichia coli ‎isolated from the urine, stool, animals, and ‎environments of patients with presumptive urinary ‎tract infection in Tanzania,” Front. Antibiotics, vol. ‎‎2, p. 1164016, 2023.‎

‎[28] M. Shaaban, S. L. Elshaer, and O. A. Abd El-Rahman, ‎‎“Prevalence of extended-spectrum β-lactamases, ‎AmpC, and carbapenemases in Proteus mirabilis ‎clinical isolates,” BMC Microbiol., vol. 22, no. 1, p. ‎‎247, 2022.‎

‎[29] F. O. Enogiomwan and I. N. Ibeh, “Forward and ‎reverse characterization of the CTX-M genes ‎associated with multi-drug resistant Escherichia coli ‎isolated from pregnant mothers presenting with ‎asymptomatic urinary tract infection in Benin City, ‎Nigeria,” Acta Sci. Microbiol., vol. 1, no. 1, pp. 21–‎‎24, 2018.‎

‎[30] N. S. Lhwak and Y. A. Abbas, “Detection of extended ‎spectrum β–lactamase gene CTX-M-1 in ‎Escherichia coli and Klebsiella pneumoniae ‎isolated from urinary tract infection of pregnant ‎women in Al-Nassyriah City,” Univ. Thi-Qar J. Sci., ‎vol. 2, no. 4, pp. 92–96, 2018.‎

‎[31] M. Shaaban, S. L. Elshaer, and O. A. Abd El-Rahman, ‎‎“Prevalence of extended-spectrum β-lactamases, ‎AmpC, and carbapenemases in Proteus mirabilis ‎clinical isolates,” BMC Microbiol., vol. 22, no. 1, p. ‎‎247, 2022.‎

‎[32] Z. K. Lawi, M. B. S. Al-Shuhaib, I. B. Amara, and A. H. ‎Alkhammas, “Two missense variants of the ‎epidermal growth factor receptor gene are ‎associated with non-small cell lung carcinoma in ‎the Iraqi population,” 2022‎

‎[33] K. V. Korneev, E. N. Sviriaeva, N. A. Mitkin, A. M. ‎Gorbacheva, A. N. Uvarova, A. S. Ustiugova, and D. ‎V. Kuprash, “Minor C allele of the SNP rs7873784 ‎associated with rheumatoid arthritis and type-2 ‎diabetes mellitus binds PU.1 and enhances TLR4 ‎expression,” Biochim. Biophys. Acta (BBA) - Mol. ‎Basis Dis., vol. 1866, no. 3, p. 165626, 2020.‎

‎[34] F. Wagenlehner, L. Nicolle, R. Bartoletti, A. C. Gales, ‎L. Grigoryan, H. Huang, and S. J. Lee, “A global ‎perspective on improving patient care in ‎uncomplicated urinary tract infection: expert ‎consensus and practical guidance,” J. Glob. ‎Antimicrob. Resist., vol. 28, pp. 18–29, 2022.‎

‎[35] A. O. Degtyareva, E. V. Antontseva, and T. I. ‎Merkulova, “Regulatory SNPs: altered transcription ‎factor binding sites implicated in complex traits and ‎diseases,” Int. J. Mol. Sci., vol. 22, no. 12, p. 6454, ‎‎2021.‎

‎[36] Z. Yang, W. Liu, X. Wan, R. Liu, and Y. Zhang, ‎‎“Association of Toll-like receptor 4 rs7873784 G/C ‎polymorphism with rheumatoid arthritis risk in a ‎Chinese population,” Immunol. Investig., vol. 51, ‎no. 3, pp. 660–669, 2022.‎

‎[37] K. V. Korneev, E. N. Sviriaeva, N. A. Mitkin, A. M. ‎Gorbacheva, A. N. Uvarova, A. S. Ustiugova, and D. ‎V. Kuprash, “Minor C allele of the SNP rs7873784 ‎associated with rheumatoid arthritis and type-2 ‎diabetes mellitus binds PU.1 and enhances TLR4 ‎expression,” Biochim. Biophys. Acta (BBA) – Mol. ‎Basis Dis., vol. 1866, no. 3, p. 165626, 2020.‎

‎[38] D. Varshney, S. Singh, E. Sinha, K. K. Mohanty, S. ‎Kumar, S. K. Barik, and P. Katara, “Systematic ‎review and meta-analysis of human Toll-like ‎receptors genetic polymorphisms for susceptibility ‎to tuberculosis infection,” Cytokine, vol. 152, p. ‎‎155791, 2022.‎

‎[39] J. Wang, C. Yang, Z. Liu, X. Li, M. Liu, Y. Wang, and ‎N. Sun, “Association of the TLR4 gene with ‎depressive symptoms and antidepressant efficacy in ‎major depressive disorder,” Neurosci. Lett., vol. ‎‎736, p. 135292, 2020.‎

‎[40] F. R. Leite, C. Enevold, K. Bendtzen, V. Baelum, and ‎R. López, “Pattern recognition receptor ‎polymorphisms in early periodontitis,” J. ‎Periodontol., vol. 90, no. 6, pp. 647–654, 2019.‎

‎[41] Y. Jin, S. Qiu, N. Shao, and J. Zheng, “Association of ‎toll-like receptor gene polymorphisms and its ‎interaction with HPV infection in determining the ‎susceptibility of cervical cancer in Chinese Han ‎population,” Mamm. Genome, vol. 28, pp. 213–219, ‎‎2017.‎

‎[42] X. H. Wang, A. G. Ma, X. X. Han, L. Chen, H. Liang, A. ‎Litifu, and F. X. Xue, “Relationship between Toll-‎like receptor 4 and type-2 diabetes mellitus ‎complicated by tuberculosis,” Int. J. Tuberc. Lung ‎Dis., vol. 21, no. 8, pp. 910–915, 2017.‎

‎[43] I. M. Shui, J. R. Stark, K. L. Penney, F. R. Schumacher, ‎M. M. Epstein, M. J. Pitt, and L. A. Mucci, “Genetic ‎variation in the toll-like receptor 4 and prostate ‎cancer incidence and mortality,” Prostate, vol. 72, ‎no. 2, pp. 209–216, 2012.‎

‎[44] K. K. Tsilidis, K. J. Helzlsouer, M. W. Smith, V. ‎Grinberg, J. Hoffman-Bolton, S. L. Clipp, and E. A. ‎Platz, “Association of common polymorphisms in ‎IL10, and in other genes related to inflammatory ‎response and obesity with colorectal cancer,” ‎Cancer Causes Control, vol. 20, pp. 1739–1751, ‎‎2009.‎

‎[45] X. Yin, T. Hou, Y. Liu, J. Chen, Z. Yao, C. Ma, and L. ‎Wei, “Association of Toll-like receptor 4 gene ‎polymorphism and expression with urinary tract ‎infection types in adults,” PLoS One, vol. 5, no. 12, ‎p. e14223, 2010.‎

‎[46] B. H. Mao, Y. F. Chang, J. Scaria, C. C. Chang, L. W. ‎Chou, N. Tien, and C. H. Teng, “Identification of ‎Escherichia coli genes associated with urinary tract ‎infections,” J. Clin. Microbiol., vol. 50, no. 2, pp. ‎‎449–456, 2012.‎

‎[47] D. K. Govindarajan, N. Viswalingam, Y. Meganathan, ‎and K. Kandaswamy, “Adherence patterns of ‎Escherichia coli in the intestine and its role in ‎pathogenesis,” Med. Microecol., vol. 5, p. 100025, ‎‎2020.‎

‎[48] V. Ballén, V. Cepas, C. Ratia, Y. Gabasa, and S. M. ‎Soto, “Clinical Escherichia coli: from biofilm ‎formation to new antibiofilm strategies,” ‎Microorganisms, vol. 10, no. 6, p. 1103, 2022.‎

Downloads

Published

2025-12-28

Issue

Section

Articles

Categories

How to Cite

Radhi, A., & SEÇİL AKILLI ŞİMŞEK ‎. (2025). The relationship between TLR4 gene polymorphism (rs7873784) and urinary tract infections caused by multidrug-resistant bacteria among Iraqi patients. University of Thi-Qar Journal of Science, 12(2), 145-154. https://doi.org/10.32792/utq/utjsci/v12i2.1491