Assessment of Some Biochemical Markers (Protein Levels, Hepatic Enzymes, Calcium, and Iron) Status in Patients of Diabetic Nephropathy in Thi-Qar/ Iraq

Authors

  • ‎ Ayat Rasheed Hameed Department of Biology, College of Science, University of Thi-Qar
  • Rasha Salih Department of Biology, College of Science, University of Thi-Qar

DOI:

https://doi.org/10.32792/utq/utjsci/v12i2.1385

Abstract

Diabetic nephropathy is a kidney disease that develops as a complication of diabetes, and it is issociated with renal impairment with increasing age. Renal impairment among diabetic individuals can be detected using serum markers of glomerular filtration rate and microalbuminuria. This study was carried out at AL-Hussein Hospital and Consulting Laboratories .The study period extended from October 2024 to January 2025. aiming to assess the biochemical changes in kidney failure patients with and without diabetes. Based on the results, it was noted that diabetic patients had higher levels of total protein and lower levels of albumin compared to the healthy control group. Additionally, patients with diabetic nephropathy had elevated levels of liver enzymes (ALT, AST, and ALP), C-reactive protein (CRP) ,and calcium. A noticeable lower iron levels were observed in both diabetic and diabetic nephropathy groups compared to the healthy control group.

 

References

‎[1]‎ L. A. Lilia, N. Prakoura, A. Michon, R. Chalghoumi, S. ‎R. Wurm, M. C. Banas, and C. Chatziantoniou, ‎‎"Role of periostin and nuclear factor-κB interplay ‎in the development of diabetic nephropathy," ‎Cells, vol. 11, no. 14, p. 2212, 2022. doi: ‎‎10.3390/cells11142212.‎

‎[2]‎ K. V. Vishnupriya, "Evaluation of anti-diabetic ‎activity of ethanolic extract of leaves of Pouteria ‎campechiana (Kunth)," Ph.D. dissertation, Annai ‎JKK Sampoorani Ammal College of Pharmacy, ‎Komarapalayam, 2019.‎

‎[3]‎ J. M. Narjes and A. S. Abdul-Razaq, "Evaluation of ‎biomarkers in Iraqi patients with diabetes mellitus ‎type 2," Egypt. J. Hosp. Med., vol. 90, no. 2, pp. ‎‎3062–3066, 2023. doi: ‎‎10.21608/ejhm.2023.291182.‎

‎[4]‎ P. N. Minh and K. Eggleston, "Diabetes prevalence ‎and risk factors among Vietnamese adults: ‎Findings from community-based screening ‎programs," Diabetes Care, vol. 38, no. 5, pp. e77–‎e78, 2015. doi: 10.2337/dc14-2506.‎

‎[5]‎ K. A. M. Al Bermani and F. M. Abdul Adheem, ‎‎"Chronic diabetes type 2; screening for chronic ‎kidney disease in a sample of Iraqi patients," JMSP, ‎vol. 9, no. 4, pp. 178–186, 2023.‎

‎[6]‎ U. L. Mark and R. Hess, "Assessment of health-‎related quality of life among patients with chronic ‎kidney disease," Adv. Chronic Kidney Dis., vol. 14, ‎no. 4, pp. 345–352, 2007. doi: ‎‎10.1053/j.ackd.2007.07.009.‎

‎[7]‎ H. R. Hazem and S. J. Abdulrahman, "Assessment the ‎role of kidney function and total proteins in ‎patients with diabetic nephropathy in Kirkuk ‎City/Iraq," J. Prev. Diagn. Manag. Hum. Dis., vol. 4, ‎no. 1, pp. 13–21, 2024.‎

‎[8]‎ R. Sana, A. Sattar, A. Khalid, and S. Rafaqat, "Role of ‎liver parameters in diabetes mellitus—A narrative ‎review," Endocr. Regul., vol. 57, no. 1, pp. 200–‎‎208, 2023. doi: 10.2478/enr-2023-0022.‎

‎[9]‎ C. Aditya, N. Mehra, M. Misra, R. Jatale, and S. ‎Ramchandran, "Liver function test and diabetes ‎mellitus: Correlation from a laboratory ‎perspective," Indian J. Med. Biochem., vol. 27, no. ‎‎2, pp. 40–44, 2023.‎

‎[10]‎ S. Juan et al., "C-reactive protein: An in-depth look ‎into structure, function, and regulation," Int. Sch. ‎Res. Notices, vol. 2014, p. 653045, 2014. doi: ‎‎10.1155/2014/653045‎

‎[11]‎ A. R. J. Manuel, D. McClain, and M. Manco, ‎‎"Mechanisms linking glucose homeostasis and iron ‎metabolism toward the onset and progression of ‎type 2 diabetes," Diabetes Care, vol. 38, no. 11, pp. ‎‎2169–2176, 2015. doi: 10.2337/dc15-0605.‎

‎[12]‎ L. S. Andrew and L. A. Stevens, "Estimating GFR ‎using the CKD epidemiology collaboration (CKD-‎EPI) creatinine equation: More accurate GFR ‎estimates, lower CKD prevalence estimates, and ‎better risk predictions," Am. J. Kidney Dis., vol. 55, ‎no. 4, pp. 622–627, 2010. doi: ‎‎10.1053/j.ajkd.2010.02.337.‎

‎[13]‎ N. Vikrant, N. Sharma, R. Sharma, Y. S. Rajput, and ‎B. Mann, "Applicability of protein estimation ‎methods for assaying glycomacropeptide," Int. J. ‎Dairy Technol., vol. 71, no. 2, pp. 539–543, 2018. ‎doi: 10.1111/1471-0307.12468.‎

‎[14]‎ A. Z. A. Ekheiwsh, "Determination the levels of C-‎reactive protein in rheumatoid arthritis patients in ‎Babylon Province/Iraq," Al-Qadisiyah Med. J., vol. ‎‎5, no. 8, pp. 17–22, 2009.‎

‎[15]‎ K. H. M. Al-Rawi, Introduction to Statistics, 2nd ed. ‎Mosul, Iraq: University of Mosul, College of ‎Agriculture and Forestry, 2000.‎

‎[16]‎ R. Amir, S. Zamir, A. Bhatti, S. S. Jan, and S. Ali, ‎‎"Evaluation of albuminuria, total plasma proteins, ‎and serum albumin in diabetics," Gomal J. Med. ‎Sci., vol. 10, no. 2, 2012.‎

‎[17]‎ A. A. Nazki, A. Syyeda, and S. Mohammed, "Total ‎proteins, albumin and HbA1c in type 2 diabetes ‎mellitus," Medpulse Int. J. Biochem., vol. 3, no. 3, ‎pp. 40–42, 2017.‎

‎[18]‎ A. S. Pallavi et al., "Spuriously high prevalence of ‎prediabetes diagnosed by HbA1c in young Indians ‎partly explained by hematological factors and iron ‎deficiency anemia," Diabetes Care, vol. 35, no. 4, ‎pp. 797–802, 2012. doi: 10.2337/dc11-1321.‎

‎[19]‎ G. M. Amruta, A. Chen, and A. M. Vuong, ‎‎"Associations between neonicotinoids and liver ‎function measures in US adults: National Health ‎and Nutrition Examination Survey 2015–2016," ‎Environ. Epidemiol., vol. 8, no. 3, p. e310, 2022. ‎doi: 10.1097/EE9.0000000000000310.‎

‎[20]‎ G. Yana et al., "How does hepatic lipid ‎accumulation lead to lipotoxicity in non-alcoholic ‎fatty liver disease?," Hepatol. Int., vol. 15, pp. 21–‎‎35, 2021. doi: 10.1007/s12072-020-10121-2.‎

‎[21]‎ K. M. Ammar et al., "Abnormal liver enzymes: A ‎review for clinicians," World J. Hepatol., vol. 13, ‎no. 11, p. 1688, 2021. doi: ‎‎10.4254/wjh.v13.i11.1688.‎

‎[22]‎ B. Yaru et al., "Clinical evidence of the ‎relationship between alanine aminotransferase and ‎diabetic kidney disease," Diabetes Metab. Syndr. ‎Obes., vol. 17, pp. 261–269, 2024. doi: ‎‎10.2147/DMSO.S452513.‎

‎[23]‎ F. O. Layla, "Study of partially purification AST ‎activity in sera of Iraqi patients with diabetic ‎nephropathy," Atherosclerosis, vol. 14, no. 9, p. 12, ‎‎2014.‎

‎[24]‎ K. S. Abdullah et al., "Aflatoxin B1 as a threshold ‎concept of uncertain etiology of chronic kidney ‎diseases," Indian J. Forensic Med. Toxicol., vol. 15, ‎no. 3, 2021.‎

‎[25]‎ M. Secil, S. Cenesiz, and M. Yarim, "Determination ‎of the effect of quercetin on oxidant-antioxidant ‎parameters in the blood and liver tissues of rats ‎given sodium fluoride experimentally," J. Indian ‎Chem. Soc., vol. 99, no. 7, p. 100486, 2022. doi: ‎‎10.1016/j.jics.2022.100486.‎

‎[26]‎ C. Hui et al., "The effects of diabetes mellitus and ‎diabetic nephropathy on bone and mineral ‎metabolism in T2DM patients," Diabetes Res. Clin. ‎Pract., vol. 100, no. 2, pp. 272–276, 2013. doi: ‎‎10.1016/j.diabres.2013.03.007.‎

‎[27]‎ Z. Lijun et al., "Association between serum alkaline ‎phosphatase and renal outcome in patients with ‎type 2 diabetes mellitus," Ren. Fail., vol. 42, no. 1, ‎pp. 818–828, 2020. doi: ‎‎10.1080/0886022X.2020.1805466.‎

‎[28]‎ Q. Hanrui et al., "Combined toxicity evaluation of ‎ochratoxin A and aflatoxin B1 on kidney and liver ‎injury, immune inflammation, and gut microbiota ‎alteration through pair-feeding pullet model," ‎Front. Immunol., vol. 13, p. 920147, 2022. doi: ‎‎10.3389/fimmu.2022.920147.‎

‎[29]‎ W. Agata and K. Balawender, "Structural and ‎metabolic changes in bone," Animals, vol. 12, no. ‎‎15, p. 1946, 2022. doi: 10.3390/ani12151946.‎

‎[30]‎ A. Yasuaki et al., "Serum high-sensitivity C-‎reactive protein levels are associated with high risk ‎of development, not progression, of diabetic ‎nephropathy among Japanese type 2 diabetic ‎patients: A prospective cohort study (Diabetes ‎Distress and Care Registry at Tenri [DDCRT7])," ‎Diabetes Care, vol. 37, no. 11, pp. 2947–2952, ‎‎2014. doi: 10.2337/dc14-0714.‎

‎[31]‎ Z. S. Akreem, E. R. Sarhat, and S. J. Khalaf, ‎‎"Association of C-reactive protein with risk of ‎complications of diabetic nephropathy," Egypt. J. ‎Chem., vol. 65, no. 8, pp. 483–487, 2022. doi: ‎‎10.21608/ejchem.2022.118048.5365.‎

‎[32]‎ Y. Y. Ke et al., "C-reactive protein promotes ‎diabetic kidney disease in db/db mice via the ‎CD32b-Smad3-mTOR signaling pathway," Sci. ‎Rep., vol. 6, p. 26740, 2016. doi: ‎‎10.1038/srep26740.‎

‎[33]‎ S. T. Ashraf, V. D. Sanctis, M. Yassin, and N. ‎Soliman, "Iron deficiency anemia and glucose ‎metabolism," Acta Biomed., vol. 88, no. 1, p. 112, ‎‎2017.‎

‎[34]‎ R. N. Roberto et al., "Iron deficiency in chronic ‎kidney disease patients with diabetes mellitus," ‎Diabetes Metab. Syndr. Clin. Res. Rev., vol. 12, no. ‎‎6, pp. 933–937, 2018. doi: ‎‎10.1016/j.dsx.2018.05.020.‎

‎[35]‎ G. G. Anat, A. Schechter, and B. R. Zvi, "Iron ‎deficiency anemia in chronic kidney disease," Acta ‎Haematol., vol. 142, no. 1, pp. 44–50, 2019. doi: ‎‎10.1159/000496492.‎

‎[36]‎ A. S. Cathrine et al., "On iron metabolism and its ‎regulation," Int. J. Mol. Sci., vol. 22, no. 9, p. 4591, ‎‎2021. doi: 10.3390/ijms22094591.‎

‎[37]‎ M. Wojciechowska, O. W. Wisniewski, P. ‎Kolodziejski, and H. Krauss, "Role of hepcidin in ‎physiology and pathophysiology. Emerging ‎experimental and clinical evidence," J. Physiol. ‎Pharmacol., vol. 72, no. 1, 2021.‎

‎[38]‎ A. H. O. Dakhil, "Relationships between iron, ‎oxidative stress, glycated proteins and the ‎development of atherosclerosis in Type 2 ‎diabetes," Ph.D. dissertation, University of ‎Leicester, 2015.‎

‎[39]‎ S. Singh and S. Bhatta, "Biochemical and ‎hematological parameters in chronic kidney ‎disease," J. Manmohan Mem. Inst. Health Sci., vol. ‎‎4, no. 1, pp. 4–11, 2018.‎

‎[40]‎ M. M. Ahmed et al., "Study of the changes of some ‎biochemical parameters of patients with renal ‎failure," Bull. Natl. Inst. Health Sci., vol. 140, no. 3, ‎pp. 2925–2933, 2022.‎

‎[41]‎ H. M. Ramy et al., "Calcium transport in the kidney ‎and disease processes," Front. Endocrinol., vol. 12, ‎p. 762130, 2022. doi: 10.3389/fendo.2021.762130.‎

‎[42]‎ D. A. Lima, H. Dimke, and R. T. Alexander, ‎‎"Biology of calcium homeostasis regulation in ‎intestine and kidney," Nephrol. Dial. Transplant., ‎vol. 40, no. 3, pp. 435–445, 2025.‎

‎[43]‎ R. S. Alluru, "Calcium, phosphorus, and ‎magnesium disorders and kidney stones," in ‎Absolute Nephrology Review: An Essential Q & A ‎Study Guide. Cham, Switzerland: Springer, 2022, ‎pp. 173–209.‎

‎[44]‎ T. Tamara, N. J. Piqueras, and S. M. Geisler, "Role ‎of high voltage-gated Ca2+ channel subunits in ‎pancreatic β-cell insulin release. From structure to ‎function," Cells, vol. 10, no. 8, p. 2004, 2021. doi: ‎‎10.3390/cells10082004.‎

Downloads

Published

2025-12-06

Issue

Section

Articles

Categories

How to Cite

Hameed, ‎ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. . R. ., & Salih, R. (2025). Assessment of Some Biochemical Markers (Protein Levels, Hepatic Enzymes, Calcium, and Iron) Status in Patients of Diabetic Nephropathy in Thi-Qar/ Iraq. University of Thi-Qar Journal of Science, 12(2), 26-33. https://doi.org/10.32792/utq/utjsci/v12i2.1385