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Abstract—  This research studies boron-containing
quantum dot (QD) structures that emit the ultraviolet. Ternary
and quaternary lattice-matched structure: BGaN/AIN ,
BGaN/BAIN , BGaN/AlGaN , BAlGaN/AlGaN , BAlGaN/
BAIN , BInGaN/AIN , BInGaN/AlGaN , and BInAIN/
BGaN and their TE and TM gain spectra, spontaneous
emission, spontaneous polarization, and piezoelectric
polarization have been examined in these structures. They have
high TE and TM spectra under reducing boron content in the
QD or barrier layer. The total polarization decreases for the
Al-containing systems, which is preferred. Binary systems emit
at 199nm, while the quaternary BInAIN/BGaN can have a
peak wavelength near 235nm. Elongating of the wavelength to
290nm is possible with BInGaN/AlGaN with high gain at a
few boron contents.

Keywords: BGaN, TE and TM gain, spontaneous emission,
spontaneous polarization, and piezoelectric polarization.

I. INTRODUCTION

The ultraviolet (UV) region covers the 10-400 nm
wavelength range and enters various applications. For
example, non-thermal technology is the most used for food
to protect and prolong its shelf life [1]. The deep ultraviolet
(DUV) radiation can efficiently kill viruses and bacteria, so
they are used in bio-medicine, water, and air purification.
Other applications include high-density storage data, medical
health care, fluorescence spectroscopy, photolithography [2,
3], and optical lithography with improved resolution [4].
These subwavelengths obtained by semiconductor structures,
such as Si, Ti0,, and GaN, crystals can work in infrared and
visible regions [5].

AlGaN-based light-emitting diodes have gained
significant importance in the UV region and especially in the
DUV. Although increasing AlGaN devices performance due
to the quality development and devices optimization, it still
suffers from higher performance improvement obstacles [3].
It’s lattice-mismatched with AIN and GaN substrates cause
an internal field in the active region, reducing the carrier
recombination as the electrons and holes are spatially
separating by this field [6]. So, the required carrier density
for optical gain increases for two reasons: first, the leakage
by the internal field. Second, the effective hole mass is
heavier than the conventional zinc blende crystals such as
GaAs and InP. Then, the oscillator strength is degrading, and
the emission wavelength is redshifted [7].
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AlGaN suffers from poor emission efficiency in the TE
mode, the favoring mode in the conventional light-emitting
diodes [8]. At high Al content (x = 0.25), the topmost
valence band is the crystal field split-off hole band, a P_z-
orbital-like band. Then AlGaN emits in a TM mode which is
perpendicular to the c-axis [9].

There are many treatments; the non-(0001) structures (the
0001 is the z-axis or the c-axis in the wurtzite crystals) which
can expect to be zero field orientation [7], Kim et al. have
enhanced the efficiency by sidewall emission to extract TM
DUV light from MQW [9]. There is another development of
AlGaN vyield by removing the lattice mismatching as closely
as possible by using boron [10].

Boron-based devices are proved as a candidate promising
for UV and DUV applications. The lattice matching is
possible for the structure of these devices with small boron
content (<12%). It experimentally demonstrates that up to 9
and 13% boron contents for BGaN and BAIN, respectively,
have lattice matching to AIN. Bandgap engineering for the
quaternary is possible for wide bandgap BAIGaN structures
[2, 10].

Park and Ahn have shown that BAIGaN can work as a
UV source with high efficiency and reduced strain [3]. They
also have investigated the TM emission increment from this
structure [8]. Park refers that boron in BAIGaN QW
improves the TE spontaneous emission [2]. Park et al. have
compared the emission characteristics from polar (c-plane)
and nonpolar (a-plane) BInGaN QW and show that they have
higher emission characteristics than InGaN structures [11].
This research studies BGaN, BAIGaN, BInGaN QDs and
obtaining high TE and TM gain and spontaneous emission at
199-290nm wavelengths. The result is important in LED
work which is not attaining with quantum well (QW)
counterpart.

Il. BORON-BASED QD STRUCTURES

Many BGaN-based structures have been examined in
this work. They are BGaN, BAIGaN, and BInGaN. The
parameters were calculated by the following relation [12],
P(A;1-_x—yB,CyD) = (1 — x — y)P(AD) + x P(BD)

+ yP(CD) + x(1 — y)P(AD) (1)
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Where P is any parameter (Egq, m,, Mpy, a, €31, €33, C13,
¢33, and Sp) under examination. This equation is applied to
calculate ternary structure these parameters: Egq, m,, Mpp,
a, esq, €33, C13, C33, and Sp which are the bandgap, electron
and hole effective masses, lattice constant, piezoelectric
tensor e;; components, and elastic stiffness components in
B,Al,Ga,_,_,N and B,In,Ga,_,_,N from GaN, BN, AIN,
and InN binary structures.

I11. GLOBAL QUASI-FERMI LEVELS, GAIN, AND SPONTANEOUS

EMISSION
In order to account for shape imperfections and random
distribution in QDs during their production, the

inhomogeneous broadening of the QDs spectrum must be
considered. Thus, the optical gain and the spontaneous
emission rate can be defined by [13, 14, 15],
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The terms f. and f, are the respective quasi-Fermi

distribution function for the conduction and valence bands,
respectively, F. and F, are the quasi-Fermi levels of the

conduction valence bands. For accurate calculations, take
into account the contributions of both the WL and QD layers
to the definition of the global quasi-Fermi levels. |é.5,,]| is
the momentum matrix element for electron-heavy hole
transition energy.

The scripts myg, &y, ¢, n,, E,M,,,, are the free mass of
electrons, the free space permittivity, the light speed, the
material background refractive index, the optical transition
energy, and the overlap between envelope functions of the
QD electron and hole states, respectively. The term

A 3 : .
PCV|2 =—(m, /6)E, is the momentum matrix element for
2

electron-heavy hole transition energy in TE polarization P
is the optical matrix energy parameter. Express the
inhomogeneous state density of self-assembled QDs D(E')

as [16]
s 1
D(E") =— 6
()= 5= ) (6)

Veff
The degeneracy number at each QD state is for the ground

(EE)

dot

I .
state S =2 while for the excited state s' = 4. The factors
VI o, EL are the QDs effective volume, the spectral
variance of the QD distribution, and the transition energy at
the maximum QD distribution of the it optical transition.
For accurate calculations, consider the contributions of both
the barrier have been considered, the WL, and the QD
layers, That was contributed in definition of the global
quasi-Fermi levels of the conduction F,, and valence bands
F,. They were determined from the surface carrier density

per QD layer as follows [13];
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The surface densities of the electrons and holes per QD
layer are, respectively, n,;and p,,. The conduction and
valence band energies are E/, E,. The respective confined
QD state in the conduction and valence bands are E; and
E.;, The spectral variance of QD electron and heavy hole
distributions are o, and o, . The effective electron (hole)
mass in the WL and the barrier are, respectively,

and my(m,,) . The subband edge energies of the
conduction (valence) band in the WL and the barrier are

E,(E,,) and E, (E,,)- The term % is the thickness of the
barrier and L, (E', ) is the Lorentzian line shape function
of the optical gain and is given by [16];

e

The number of photons emitted per second per unit volume
per unit energy is the spontaneous emission rate, R, that
was calculated from the relation [14, 15],

2
_ niw? (2.95 + g5")
Rep = Am2c? 3 (10)

In the case of spontaneous emission, the factor fC(E, FC) -
f,(E,F,) is replaced by [12, 15],
fe(E.F)1 - f,(E.R)]

L, (E' hw) =

Ssp

IV. TM MODE MOMENTUM MATRIX ELEMENT OF QD
STRUCTURE
The momentum matrix element term |é.p_ | of QDs in Eq.
(1) depends on the light polarization. The TM polarization
momentum matrix element in electron-heavy hole (e—hh)

transition is important for the boron-based structures. The
TM momentum matrix element of QDs is [12],

(l 2>=i2fd¢|z.p F=3mzsine )
272_0 e-hh 2 b

2
The angular factor 05" € can be related to the electron or
hole wave vectors in the y-direction as follows [17],

m

cos’ 6 ="
cnml

The CB energy in the y-direction is E,, while E_,, is that

of the QD state. As a result, the TM mode momentum
matrix elements of the QD structure becomes [18],

(12)
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The bulk momentum matrix element is M? = ( 60 )E,-

V. POLARIZATION EFFECTS

hh The sum of the spontaneous polarization in the structure,
which is at equilibrium, and the piezoelectric polarization
OP that results from strain-induced polarization is the total
macroscopic polarization (P) of the solid in the absence of
external fields. The piezoelectric polarization is proportional
to the strain € in the linear regime [19],

SR=2e¢ (14
i

The equation (14) specifies the piezoelectric tensor
components e;; (using Voigt notation). Since the (0001)
axis is the growth direction of both bulk materials and
nitride superlattices, the polarization is considering along
this direction. The piezoelectric polarization is simply

expressing as [19],
C13
- —_— 15
. (331 933C33) (15)

Ppz =12 =%
where a, is the equilibrium value of the lattice constant a,
and e;; and e;; are the piezoelectric coefficients. The
polarization induced by a shear strain related to the
piezoelectric tensor, es, will be ignored in this study.

V1. RESULTS AND DISCUSSION

The parameters of the calculations are shown in Table 1. In
this section, The results of boron-containing QD structure
were presented, and they grouping depending on their QD
layer structure.

A. BGaN structures

Figure 1 shows the TE and TM gain modes for BGaN /AIN
at some boron mole fractions. The TE spectra are higher
than that of TM by three orders. All the spectra are peaked
at 199nm. Reducing x (boron)-mole fraction by one order
increases the gain by three orders. The spontaneous
emission spectra are a picture of the gain spectra. High TE
(and TM) is of central importance in LED applications
compared to its QW counterpart and promising in UV QD
LED.

Figure 2 shows the possibility of increasing spectra by more
reduction in the boron mole-fraction. The QD spectra are
still at the same peak wavelength despite the change of mole
fraction, which refers to the main effect of the ALN barrier
that has a wide bandgap as a comparison with to that of QD.
Figure 3 shows the polarization effect of BGaN/AIN QD
structure. At 0.15 boron mole-fraction, the pizoelectric
polarization changes from positive to negative due to strain
effect at this mole fraction. Note that, works (and this work)
are not go this fraction [2].

Figure 4 studies BGaN /BAIN QD structure. It shows the
effect of adding boron to the barrier layer. A few boron
mole fractions in the barrier still give similar results when
the ALN alone is the barrier in both spectrum height at
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wavelength. Higher boron content in the barrier reduces the
spectrum.

In Figure 5, AlGaN have been examined as a barrier layer
for BGaN QD structure. However, BGaN emits at 199nm at
all of the above structures, Figure 5 shows the increasing
peak gain and a slight blue shift with increasing Al-mole
fraction in the barrier layer of BGaN/AlIGaN QD structure
attributed to the wider bandgap of AIN, which controls the
transitions.  Al-barrier controlling of the emission
wavelength is also with other QD structures not containing
boron [20].

B. BAIGaN structures

Figure 6 examines BAlGaN/AlGaN QD structure and
shows the possibility of increasing gain by reducing boron
mole-fraction. TE gain is increased by one order while TM
mode is doubling.

Figure 7 shows the effect of Al composition on the QD layer
in BAlGaN/AIN QD structure. Increasing Al content
reduces the spectra. Increasing the Al content by 0.001
reduces the TE gain by three times. A similar result is also
shown [2, 8] for BAIGaN QWs.

Figure 8 shows the polarization when adding a few Al mole-
fraction. As comparison with Figure 3 (for BGaN), the
spontaneous polarization was  increased for the Al-
containing structure, and then the total polarization is
reduced for this structure which is preferred.

Figure 9 shows the BAlGaN/BAIN QD structure at
different boron content in the barrier layer where their
emission wavelength is 200nm. Reducing the boron content
(increasing Al) in the barrier increases the peak gain.

C. BInGaN structures

Figure 10 examines BInGaN/AIN QD structure. The effect
of adding indium instead of aluminum exhibits a spectrum
with a peak at the same wavelength. However, it becomes
higher. BInGaN/AIN QD structure is increased by four
orders in both TE and TM compared with BAIGaN/AIN
QD structure in Figure 6. Figure 11 shows the polarization
of BInGaN, which is not different from BAIGaN.

In addition to exploring the boron-based QD structures in
the UV region, BInGaN/AIGaN is examined in Figure 12
and shows interesting results. Adding Ga to the AIN barrier
changes the emission wavelength from 199 into 290nm with
a high TE gain while absorption for TM mode under few
reductions of boron content in the QD.

Continuing examination of the AlGaN barrier, Figure 13
shows the emitted wavelength is made shorter with the
increasing of boron in the QD, which is also shown in [2, 8,
11] for QWSs due to growing bandgap with boron
composition [21].

In both figures 12 and 13, the gain changes from positive to
negative, i.e., gain due to high transparency point of these
structures which means that a high carrier density must be
used to attain gain.

Figure 14 shows an increment in the absolute value of
polarization  for  BInGaN/AlGaN compared  with
BInGaN/AIN QD structures.



Then, the research has examined the addition of boron to the
barrier layer. Figure 15 shows BInGaN/BAIN QD structure
where the structure emits near 222nm by controlling boron
composition in the barrier. Better TE and TM gain values
are obtaining.

Figure 16 gives another example of the BInGaN/BALN QD
structure emitting possibility, which emits near 235nm by
adjusting boron content in the QD and barrier layers.
Reducing boron fraction reduces gain.

VI1l. CONCLUSIONS

Boron-based QD structures emit at ultraviolet were
examined theoretically. Ternary and quaternary lattice
matched structure: BGaN /AIN , BGaN/BAIN , BGaN/
AlGaN , BAlGaN /BAIN, BInGaN /AIN, BInGaN /AlGaN ,
and BInGaN /BAIN. TE and TM gain spectra, spontaneous
emission, spontaneous polarization, and piezoelectric
polarization were experienced in these structures, and high
spectra result from reducing boron content. The total
polarization is few at 0.15 boron mole-fraction. Binary
systems were emitted at 199nm. Higher boron content in the
barrier reduces the spectrum. BInGaN /AIN spectrum was
increased by four orders compared to the corresponding Al
structure. BInGaN/BAIN was emitted near 222nm by
controlling boron in the barrier with good TE and TM gain.
BInAIN/BGaN. The structure BInGaN /BAIN can have a
peak wavelength near 235nm. Elongating wavelength to
290nm is possible with BInGaN /AlGaN with high yield
appearing at few boron.

Disclosers: The authors declare that there is no conflict of
interest.

TABLE I. THE PARAMETERS USED IN THE CALCULATIONS [2, 12, 20].
Parameters BN GaN AIN InN
Eg(eV) 5.2 3.44 6.25 0.64
atT=300K
me/mo 0.752 0.2 0.32 0.07
atT=300K
atT=300K
a(A) 2.534 3.189 3.112 3.545
atT=300K
g3 (C/m?) 0.27 -0.49 0.6 -0.57
e33 (C/m?) -0.85 0.73 1.46 0.97
C3 (10" dyne/cm?) 7.4 9.4 12.7 12.7
Cgs (10™ dyne/cm?) 107.7 20.0 38.2 38.2

| Psyp(C/m?) -2.174 -0.034 -0.090 -0.042
Ax(eV) 0.333 0.010 -0.169 0.040
Aso(eV) 0.21 0.017 0.019 0.005
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FIGURE 12: THE TE AND TM GAIN MODES AND SPONTANEOUS EMISSION FOR
BInGaN /AIN QD STRUCTURE AT DIFFERENT BORON COMPOSITIONS.
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