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Abstract— The plane wave expansion method was implemented 

in modeling and simulating the band structures of two 

dimensional photonic crystals (PhCs) with square, triangular 

and honeycomb lattices with circular air holes in dielectric or 

circular GaAs rods in air. The eigen value equation of TE and 

TM modes will presented. The Fourier transform of dielectric 

constant will analyzed and the effects of lattice type will 

discussed. The eigenvalue equations of TE and TM modes will 

solved using Matlab environment. Our results show that the 

first type of PhCs is more flexible than the second type in 

controlling the band widths and the achieved frequency 

positions, and the triangular lattice showed the greatest 

flexibility. On the other hand, this work showed the significant 

effect of the dielectric constant and the lattice constant on the 

achieved bandwidth. 
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I.    INTRODUCTION 

The study of periodic dielectric structure has 

received a lot of attention in recent years because of its 

ability to prevent electromagnetic waves from propagating 

in a specific frequency range [1]. This is owing to 

periodicity-induced reductions in degeneracies of free-

photon states at the Bragg planes, which results in forbidden 

frequency gaps known as photonic band gaps (PBG) [2]. 

Despite the huge disparity in wavelengths, it is highly 

attractive to characterize the propagation of electromagnetic 

waves in these artificial materials in the same way as 

electron waves in actual crystals are [3]. The dispersion 

relation gives photonic band structures and some concepts, 

such as impurity states and effective masses, which are very 

usual for electrons, can be extended to photons. The 

existence of such PBGs when they overlap with the 

electronic gaps is particularly promising with  

regards to the control the spontaneous emission of light, 

which is essential for the realization of threshold less and 

low-noise semiconductor lasers. The study of structures that 

possess wide PBGs in the frequency range of interest for the 

applications has motivated a lot of research [4]. 

To prevent wave propagation in any direction, the 

gaps opened at various points in the Brillouin zone must 

overlap as much as possible, resulting in large absolute band 

gaps. Thus, it is desirable that the different gaps are large 

and centered on neighboring frequencies. Such a condition 

can be achieved for the Brillouin zone by deviating slightly 

from the spherical shape [5]. The PhCs can play this role 

because they called PBGs. PBGs are frequency regions 

where light is forbidden to propagate. Thus, they allow for 

controlling over the photons similar to the one over charge 

carriers in electronics [6]. To be practical, PBGs should be 

active for both transverse electric (TE) and transverse 

magnetic (TM) polarizations at all angles of light incidence 

[7]. Two dimensional (2D) PhCs can exhibit a variety of 

such PBGs. However, idealized 2D PhCs are not realistic 

and are used only for computational modeling. There are 

two main types of PhC structures: the first type is high 

dielectric index pillars in air that tends to open TM PBGs, 

and the second type is air holes in high dielectric 

background that tends to open TE PBGs [8,9]. 

In this paper, the eigen value equation of TE and 

TM modes will presented. The Fourier transform of 

dielectric constant will analyzed and the effects of lattice 

type and rod shapes will discussed. We will focus on two 

types of PhCs, the first is circular air holes in dielectric and 

the second is a GaAs circular rods that were arranged in air.  

II.   THEORETICAL MANAGEMENT 

Essentially, there are types of 2D lattice structures: 

the orthogonal lattice and the oblique lattice. The orthogonal 

lattice is shown in Fig. 1a, which is called „2D square 

lattice‟. In the oblique systems, there are the triangular 

lattice (also called as a hexagonal lattice) shown in Fig. 1b 

and the honeycomb lattice is shown in Fig. 1c [10]. 
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a)                          b)                      (c 
Fig. 1: Unit cell and basis lattice vectors in 2D: a)square b) 

triangular c) honeycomb lattices [1]. 

 

The photonic band structures can be obtained by 

solving Maxwell‟s equations using the plane wave 

expansion method. For the sake of convenience, we provide 

a brief account of this method. Consider a periodic array of 

circular dielectrics with longitudinal axes parallel to the z-

axis. In terms of dielectric materials, Maxwell‟s equations 

are represented in terms of the magnetic field H [9] 
2
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where   is the position-dependent dielectric constant, r is 

the coordinates in the plane perpendicular to the rods, and 

c  is the EM wave phase speed in a vacuum. For infinite 

periodic structures, Bloch theorem is often used [10]. The 

Bloch theorem shows that a plane wave in an infinite 

periodic structure will be modulated by periodicity. So, the 

magnetic field can be expressed as [11] 
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where L
r

 is an arbitrary lattice vector, ˆ
ke  is a unit vector in 

the direction of H
r

 and perpendicular to the wave vector k
r

. The dielectric function ( )r
r

 is periodic in r-space 
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, 1,2,3i i l  are integers, and , 1, 2,3ia i 
r

 are the basis 

vectors to describe the periodic lattice. The Fourier 

transform for periodic functions may be written as [3] 
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where 1 2 3A a a a  

r r r
 corresponds to the volume of the PhC 

unit cell. Since ( )h r
r

 has the same periodic property as 

( )r
r

, the magnetic field can be extended as [4] 
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Here, 
iG  is an arbitrary spatial frequency which we call it 

as reciprocal lattice vector and 1 1 2 2 3 3iG h b h b h b  
r r rr

, 

where , 1,2,3ih i   are integers, , 1,2,3ib i 
r

 represent 

basis vectors in the reciprocal space,   takes the values 1 

and 2, ê  represents the two orthogonal unit  

vectors, 
1 2
ˆ ˆ 0e e  , which are perpendicular to ik G

r r
, i.e. 

ˆ( ) 0ik G e  
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Using Eqs.(4) into (1), yields [12] 
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Since 
2 1 1 2

ˆ ˆ ˆ ˆ 0e e e e      are zero, and two polarizations 
1h  

and 
2h  become decoupled. Where 

1h  is in the xy-plane and 

2h  is along z-direction, 
1h  is TM mode, and 

2h  is TE 

mode. For 2D lattices, the material is homogeneous in z 

direction while periodic along x and y directions. The mirror 

symmetry along the z axis allows to classify the modes by 

separating them into two distinct polarization, the TE mode 

and the TM mode. Therefore Eq.(5) decoupled into two 

equations which makes two unit vector sets unnecessary. 

The TM polarized mode and TE-polarized mode will be [8]
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The absolute parts of these fields are used to calculate mode 

fields. ( )G  is the inverse of the Fourier transform matrix 

of  ε(r). In this standard eigenvalue problem, the difficulty 

in the analysis of the eigenvalue problem lies on Fourier 

transformation of the dielectric function. Performing a 

numerical fast Fourier transform is subjected to convergence 

problem and symmetry conditions become complex for 

some problems [6]. The Fourier component, in the lattice 

space of dielectric constant ε(r) is defined as [8] 
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where R  is the air cylinder radius. Substituting Eq.(7) into 

(3) and simplification the result yields [13] 
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where f  is the filling factor defined as the fraction of area 

occupied by the localized medium in one unit cell, and 

1( )J GR  is the first-class Bessel function and ( a  and )b  

refer to the dielectric constants of the localized medium and 

the background respectively.  

For honeycomb lattice, ( )G  is given by [7] 
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where the parameter   is defined as 
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where , , ,x x y yG G G G   are vectors that constructed from the 

reciprocal lattice vectors and a  is the lattice constant. The 

difference between Eq.(8) and (9) is that the factor cos  

appears in the case of honeycomb PhC [10]. The structure 

factors for various shapes are tabulated in table(1). 

 

      TABLE. 1:              Examples of Structure Factors for Different Shapes 

of Rods [10].     
Shape Structure Factor 
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where a  is the side-length of a hexagonal 

 
 

III.    RESULTS and DISCUSSION 

The calculations were performed using the Matlab 

environment using the values: 1,  13a b    in the first 

type and 8,  1a b    in the second type, unless otherwise 

indicated. Emphasis is placed on computing the band width 

in the two cases. Noting that the method adopted for the 

solution is not ideal like other methods, but it is the best 

method to solve the wave equations in the PhCs. Figs. 2 and 

3 explain the normalized band width as function of b  of 

the first type of TE and TM modes using the lattices: square, 

triangular and honeycomb, respectively. For all cases, the 

larger b  
value may present larger band width for a 

significant bands. In general, b  
may be maximized one 

band except the case (square lattice) in the TE modes. For a 

square lattice, Fig. 2 shows that the first and second bands 

will occur, where the width of the band increases with the 

increase in the permittivity 
b , while noting that the width 

of the second band is greater. For triangular lattice, the first 

band width increases with increase b , and a little 

secondary width is achieved for other bands. In the case of 

honeycomb lattice, the fourth band appears to give the 

greatest width. Fig. 3 represents the TM modes of  the first 

type of PhCs, in the case of a square lattice, one can see that 

only the first band will occur, where the width of the band 

increases with the increase of 
b  In the case of triangular 

lattice, the seventh band appears to give the greatest width at 

13,b   and the sixth band can appear less frequently. In 

the case of honeycomb lattice, the first band appears to give 

the greatest width increases with increase 
b , and the fifth 

band appears with a smaller width and is the greatest 

possible at 8.b   Note that, the dielectric value b  
may be 

used to control the band width but the allowed values of 

permittivity are limited for dielectric, where we find that the 

triangular lattice at b =13 has the largest width. 

Figs. 4 and 5 explain the normalized band width as 

a function of a  of the second type of TE and TM modes 

using the lattices: square, triangular and honeycomb, 

respectively. For all cases, the larger a value may present 

larger band width for a significant bands. In the case of the 

square lattice, Fig. 4 indicates that the largest band width 

appears at the sixth band at 6,a   and there is little width 

achieved at the fourth band within a small range of the 

permittivity which is greatest possible at 8.a   For 

triangular lattice, the first band width increases with 

increase a , and a little secondary width is achieved for 

other bands. In the case of honeycomb lattice, it does not 

show any band, and therefore this case will not pass the 

electric field at all. Here the triangular lattice achieves better 

width than the  

other lattices. In Fig. 5, the third, sixth, and first bands 

appear almost identically in the case of the square lattice and 

triangular lattice, and not appear in the case of the 

honeycomb lattice. One can see that the bands appeare to 

give the greatest width increases with increase a  Here 

again the second type PhC never passes the magnetic field. 

Note that, the dielectric value a may be used to control the 

band width but the allowed values of permittivity are limited 

for dielectric. We find that the triangular lattice at a = 8, 

has the largest width. 

               Fig. 6 explains the photonic band structures for one 

IBZ of the TE modes of the first type for the lattices: square, 

triangular and honeycomb. The complet bands prosent in the 

different lattices at different locations. Also, the band width 

affects by lattice type. In general, electromagnetic waves in 

periodic structures only exist as discrete modes, These an 

called Bloch modes. Fields can only exist as integer 

combinations of the eign-modes of the lattice. Electric field 

the of the lowest order mode refere to reside in higher index 

regions. Modes must be orthogonal. However, the present 

band gap structures compute at the radius R= 0.38a of the 

air holes in the first type. These photonic band structures 

will be changed strongly by changing the lattice parameters. 
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Fig. 2: The normalized band width of TE modes in first type lattice as function of b for 0.38 .R a  

 

 

Fig. 3: The normalized band width of TM modes in first type lattice as function of b for 0.38 .R a  

 

 

Fig. 4: The normalized band width of TE modes in second type lattice as function of a for 0.38 .R a  
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Fig. 5: The normalized band width of TM modes in second type lattice as function of a for 0.38 .R a  

 

    

Fig. 6: Band structures of TE modes in 2D PhC lattices with radius R=0.38a for the first type. 

 

Fig. 7: The norm band width as a function of lattice constant  for 0.38R a  of TE modes in second type lattice. 
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Fig. 7 illustrates the normalized band width as a 

function of lattice constant for the TE modes using different 

lattices in the first type PhC. The lattice constant can control 

the band width for any lattice. In the case of a square lattice, 

a greater width occurs at the sixth band in the lattice 

constant 1.2, and an oscillating secondary width at the 

fourth band. In the case of triangular lattice, a greater width 

occurs at the fourth band that appears at lattice constant 1.9, 

and a little secondary width is achieved for other bands. In 

the case of honeycomb lattice, it does not show any band, 

and therefore this case will not pass the electric field at all. 

That is; the triangular lattice has the largest width. 

  

IV.   CONCLUSIONS 

 As a conclusion, the achieved complete bands are 

affected by the PhC type, the lattice type, and the lattice 

constant. The dielectric constant and lattice constant must be 

regulated in order to maximize the achievable bandwidth. 

Maximum bandwidths are reached in the first type due to a 

larger dielectric constant than in the other type. In general, 

the TM band gaps are favored in a lattice of isolated high-   

regions and TE band gaps are favored in a connected lattice. 
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