Synthesis, Characterization of some New 4-Thiazolidinone of Acenaphthoquinone

Muntaha .Y. Hayal Dept. of Chemistry/ Science College/ University of Thi-Qar Iraq

Abstract— This work summarized with Synthesis of schiff's bases 1(a-c) from reaction of parent compound acenaphthoquinon with primary amines . Treating of imines compounds with thioglycolic acid was produced thiazolidinone derivatives 2 (a-c) .The structures of synthesized compounds were confirmed by using some spectroscopic analysis such as FT.IR, 1H-NMR and 13C-NMR spectral

Keywords— thioglycolic acid ; 13C-NMR spectra ; Acenaphthenquinone; thiazolidin

I. INTRODUCTION

Thiazolidined-4-one are the derivatives of thiazolidine which belong to an important group of heterocyclic compounds containing sulfur and nitrogen in a five member ring ⁽¹⁾ 1,3-Thiazolidin-4-ones are heterocyclic at position 1 containing a sulfur atom , position 3 nitrogen and position 4 carbonyl group⁽²⁾ figure (1) .Thiazolidine and its composites are key components of many natural products and drugs . In addition, Thiazolidine found to uses as antitubercular ⁽³⁾, antibacterial ⁽⁴⁾, anti-inflammatory ⁽⁵⁾, as antiviral agents, especially as anti-HIV agents ⁽⁶⁾, anticancer ^(7,8), anticonvulsant ⁽⁹⁾ and antidiabetic activity ⁽¹⁰⁾.

II. EXPERIMENTAL PART

A. General procedure for the preparation of imines 1(a-c)

In general⁽¹¹⁾, imines prepared by mixed the amine with acenaphthoquinone in (25 ml) of Suitable solvent ethanol and add (10 - 15) drops of glacial acetic acid were refluxed in water bath for (24 - 25) h .The reaction was followed up with TLC the eluent using [Hexane :Ethyl acetate (7:3)]. When the reaction completion the solvent removed by evaporation then the product recrystallized by methanol.

Mahmood Shakir Magtoof Dept. of Chemistry/ College of Science / University of Thi-Qar Iraq Mahmood672000@yahoo.com

B. (1Z,2E)-N,N'-bis(4-methylphenyl)-2a,5dihydroacenaphthylene-1,2-diimine(1a)

Prepared by reaction Acenaphthenquinone (1g, 5.489 mmol) with 4-methylaniline (1.176 g , 10.978 mmol) m.p = 220-222 R_f = 0.9 IR (KBr disk):(1629. 85) cm⁻¹ (C=N) yield = 78% .

C. (*1Z*,2*E*)-*N*,*N'*-*bis*(4-(*dimethylamino*) *phenyl*)-2*a*,5*dihydro acenaphthylene*-1,2-*diimine* (*1b*)

Prepared by reaction Acenaphthenquinone (1g, 5.489 mmol) with N,N-dimethylbenzene-1,4-diamine (1.495 g , 10.978 mmol) m.p = 246-248 $R_f = 0.7$ IR (KBr disk): (C=N) 1654. 92 cm⁻¹ yield = 76 % .

D. (2Z)-2-[(4-bromophenyl)imino]-6,8adihydroacenaphthylen -1(2H)-one ((1c)

E. General Procedure of thiazoledinones 2(a-c)

In general, $^{(12)}$ the thiazoledinones were mixed with imines 1(a-c) and thioglycolic acid in (15 ml) chloroform, Then refluxed for (18-24) h with Stirring. The reaction monitord by TLC using eluent [n-Hexane-Ethyl acetate (3:7)]. When The reaction completed the solvent removed to give thiazoledinone. The product was precipitated and recrystallized with the addition of methanol droplets.

F. N-(4-methylphenyl)-4'-spiro[acenaphthylene-2,2'thiazolidine] (2a)

Prepared by reacting (1g, 2.778 mmole) (2*E*)-2-[(4-methylphenyl) imino]-1,2-diphenyl ethanone (1a) and (0.674mL, 0,.447g, 5.556 mmole) of thioglycolic acid. $R_f = 0.7$, yield = 63 %, m.p. =232-234 °C. IR (KBr disk): 1689.64 cm-1 (–N–C=O).

G. N-(4--(dimethylamino) phenyl)-4'-spiro[acenaphthylene-2,2'-thiazolidine] (2b)

Prepared by reacting (1g, 3.049 mmole) (1Z,2E)-N, N'-bis (4-(dimethylamino) phenyl)-2a,5dihydroacenaphthylene-1,2-diimine(1b) and (0.354 mL, 0,469 g, 6.098 mmole) of thioglycolic acid. R_f = 0.7 , yield = 60%, m.p. = 255-257°C. IR (KBr disk): 1686.51cm-1 (-N-C=O)

H. N-(4-bromophenyl)-4'-spiro[acenaphthylene-2thiazolidine] (2c)

prepared by reacting (1g, 2.974 mmole) (2Z)-2-[(4-bromophenyl)imino]-6,8a-dihydroacenaphthylen -1(2H)-one (1c) and (0.361 mL, 0.272 g, 2.974 mmole) of thioglycolic acid $R_f = 0.8$, yield = 62 %, m.p. = 236-238 °C. IR (KBr disk): 1698.85 cm-1 (-N–C=O)

III. MEASUREMENTS

Melting points were determined in open capillary tubes using an electro thermal melting point /SMP3I apparatus. FTIR spectra in the range (200-4000) cm⁻¹ were recorded as KBr discs using a Shimadzu FTIR spectrophotometer,The. ¹H-NMR were recorded on VARIAN spectrophotometer (300 MHz), the ¹³C-NMR spectra were recorded using VARIAN spectrophotometer (75 MHz) relative to the internal standard tetramethylsilane (TMS), DMSO-d₆ used as solvent.

IV. RESULT AND DISCUSSION

Prepared Compounds1(a-c) from the reaction of acenaphthoquinone with 4-methylaniline , N,N-dimethylbenzene-1,4-diamine and 4-bromoaniline respectively with the presence of glacial acetic acid in absolute ethanol as shown in scheme (1) .

scheme (1): Synthesis of the compounds 1(a-c)

The reaction involves a nucleophilic attack of the amine group on the carbon of the carbonyl group of the ketone to form a compound N-(substituted hemiaminals) which loses a water molecule to give the stable compound . Mechanism of imines formation $^{(13)}$ shown in scheme (2)

scheme(2): Mechanism of imines formation

Measured the melting points Compounds 1(a-c) as show in Table (1) diagnosed by specifying (FT-IR) shown in Table (2). It features ranges corresponding to the expansion vibrations , azomethine band (C=N) ,aromatic (C=C) ,bands aromatic (C-H) and aliphatic (C-H) . These bands occur (1629.85, 1654.92,1654.92) , (1587.42, 1602.85, 1598.99),(3051.39, 3047.53, 3055.24),(2916.37,-----, 2835.36) cm⁻¹ respectively .

Table (1) shows the physical properties data imines 1(a-c)

Comp. 1 (a-c)	m.p.°C	Colour	Reaction time
1 a	220-222	Orange	24h
1b	246-248	Red	25h
1c	238-240	Yellow	24h

Table (2): sl	hows IR sp	pectra of I	mines 1(a-c)
---------------	------------	-------------	--------------

Comp. l(a-c)	Aromatic C-H stretching cm ⁻¹	Aliphatic C-H stretching cm ⁻¹	Azomethine C=N stretching cm ⁻¹	Aromatic C=C stretching cm ⁻¹
1 a	3051.39	2916.37	1629.85	1587.42
1b	3047.53	2875.86	1654.92	1602.85
1c	3055.24	2972.31	1654.92	1598.99

V. SYNTHESIS 4-THIAZOLDINON

Compounds were 2(a-c) prepared from the reaction of imines 1(a-c) with acid thioglycolic acid in absolute chloroform as shown in scheme (3).

Scheme (3): Synthesis of the compounds 2(a-c)

Involved mechanism cycloaddition⁽¹³⁾ formation 4-Thiazoldinone as shown in Scheme (4)

scheme (4) Mechanism of 4-Thiazoldinone formation

The melting point of the prepared compounds 2(a-c) was measured as shown in Table (3) The (FTIR) spectra Table (4) of compound 2(a-c) show featured packages most notably, C-H aromatic, aromatic C=C , aliphatic C-H andcarbonyl amide group which occur within;- (3051.39, 3054.83, 3069.35),(1608.63, 1606.28, 1691.57),(2920.23, 2984.09, 1600.77),(1689.64, 1686.51, 1600.77)

Table 3: physical properties of thiazoledinones 2(a-c)

Comp. 2 (a-c)	m.p.°C	Colour	Reaction time
2 a	232-234	Grey	24h
2b	255-257	Yellow	25h
2c	236-238	White	24h

Table (4): FTIR spectral data of Thiazolidinones 2(a-c)

Comp. 2 (a-c)	Aromati c C-H stretchin g cm ⁻¹	Aromatic C=C stretching cm ⁻¹	Aliphatic C-H stretchin g cm ⁻¹	Amide C=O stretching cm ⁻¹ (thia-)
2 a	3051.39	1608.63	2920.23	1689.64
2b	3054.83	1606.28	2984.09	1686.51
2c	3069.35	1691.57	1600.77	1698.58

The ¹H-NMR of 2(a-c) shows signals at $\delta(2.39)$ ppm for CH₃ Component (2a) and $\delta(2.51)$ ppm for N-(CH₃)₂ Component (2b) also show characteristic chemical shift (CH₂) group of thiazoledinone ring showed doublet of doublet signal at chemical shift δ [dd-(4.10- 4.05ppm, *J* =15HZ) - (4.08- 4.03ppm, *J* =15HZ) - (4.12- 4.07ppm, *J* =15HZ)],and doublet of doublet signal at chemical shift δ [dd-(4.34- 4.29ppm, *J* =15HZ) - (4.23- 4.18ppm, *J* =15HZ) - (4.27- 4.22ppm, *J* =15HZ) respectively . a multiplet signal at δ (6.72-8.01) ,(6.39-8.29),(6.89-8.28) ppm for aromatic protons respectively as show Table (5) .

¹³C-NMR spectral of 2(a-c) gives signal at δ (20.89) ppm for carbon -CH₃ Component (2a) , at δ (40.11) ppm for carbon –NCH₃ Component (2b) and characteristic signal of 2(a-c) of thiazoledinone ring show at[(33.17) , (32.92), (33.07) ppm] for carbon –CH₂- , at[(72.98) , (73.59), (73.29) ppm] for carbon S-C-N ,at[(172.67) , (172.55), (172.41) ppm] for carbon –N-C=O as show Table (6) .

Table(5): ¹H-NMR spectral data of Thiazolidinones 2(a-c)

Comp. 2			Aromatic	Aliphatic	
(a-c)	С-Н	C -H ring	proton	proton	
	ring , J	, JHz			
	Hz				
2 a	4.10-	4.34-	6.72-8.01	2.39	
	4.05 ppm	4.29ppm			
	J=15HZ	J=15HZ			
2b	4.08-	4.23-	6.39-8.29	2.51	
	4.03 ppm	4.18ppm			
	J=15HZ	J = 15 HZ			
2c	4.12-	4.27-	6.89-8.28		
	4.07ppm	4.22ppm			
	J=15HZ	J=15HZ			

Table(6) ¹³C-NMR spectral data of Thiazolidinones2(a-c)

Chemical shift ppm					
Comp. 2 (a-c)	-CH2-	C-N-S	N-C=O	C-Ar	Other
2 a	33.17	72.98	172.67	118.08 - 148.24	-(CH ₃) 20.89
2b	32.92	73.55	172.55	112.37- 150.05	
2c	33.07	73.29	172.42	121.72- 140.58	-(NCH) 40.11

REFERENCES

1- Krishnakant T. Waghmode ,Journal of Chemical and Pharmaceutical Research, 6(5):1101-1105, (2014).

2- Altintas H, Ates O, Birteksoz S, Gulten O, Uzun M, et al. Turk J Chem 29: 425-435, (2005) .

3 - Zhou, C.F.; Chen, J.; Liu, P.G.; et al.: Design, Bioorg. Med. Chem.; 18(1):314-9, (2010)..

4 - Handan, A.; Oznur, A.; and Seher, B.: Turk.Chem.J.; 29: 425 – 435, (2005).

5 - Chandra, T.; Garg, N. and Kumar, A., World Journal of Chemistry.; 4 (2): 210-218 , (2009) .

6- Rawal, R.K.; Tripathi, R.; Kulkarni, S.; et al ,.Chem Biol. Drug Des, 72(2):147 –54 , (2008) .

7 - Senkiv, J.; Finiuk, N.; Kaminskyy, D.; Havrylyuk, D.; Wojtyra, M.; Kril, I.; Lesyk, R. Eur J Med Chem, 117, 33, (2016) ..

8- Szychowski, K. A.; Leja, M. L.; Kaminskyy, D. V.; Binduga, U. E.; Pinyazhko, R.; Lesyk, R. B.; Gmiński, J. Chem Biol Interact, 262, 46, (2017).

9 - Shingalapur, R. V.; Hosamani, K. M.; Keri, R. S.; Hugar, M. H. Eur J Med Chem, 45, 1753 , (2010) .

10- Deshmukh, A. R.; Bhosle, M. R.; Khillare, L. D.; Dhumal, S. T.; Mishra, A.; Srivastava, A. K.; Mane, R. A. Res Chem Intermed , 43, 1107, (2016).

11 - Krishnaswamy, D.; Tetrahedron , 34, 4567, (2002).

12-Divyesh P., Premlata K., and Navin P., Arch. Appl. Sci. Res., 2(6), 6875, (2010).

13- Wang L., Feng Y. , Xue J. and Li Y., J, Serb, Chem. Soc., 73, 1,($2008)\,.$

14- Shah J., and Desai A., ARKIVOC, 14, 218, (2007).