University of Thi-Qar Journal of Science (UTsci) The 4th Scientific Conference of Science College/University of Thi-Qar Volume (7), No.2

Energy Levels and Electromagnetic Transition of 90-94mo Nuclei Using Ibm-1

Omar Ahmed Muaffaq* Firas Mahmood Hady Faissal Gazi Hammody of physics-college of science –university of Diyalah Iraq *Email:omaralqadiry@yahoo.com-

Abstract- The energy states for the ϑ , β , ν bands and electromagnetic transitions B (E2) values for even – even molybdenum $^{90-94}$ Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even $^{90-94}$ Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 4_1^+ to 2_1^+ states (R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the ⁹⁰⁻⁹⁴ Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the ^{90–94}Mo isotopes with the experimental data .

Keywords - Energy states, Symmetry U(5), B(E2) value , molybdenum Mo isotopes.

I. Introduction

The" interacting bosons model (IBM-1)" is describe the nuclear states of isotopes (arima and Iachello,1975; Hasan *et al.*, 2017 ;Islam and Hossain2016). This model used to descripe the nuclear excitation states and calculate it . The IBM-1 is successful in reproducing the energy states of isotopes (Iachello and Arima, 1987; Hummadi, 2017; kassim.*et al.*, 2016) .This model not distinguished between the proton and neutron bosons . The Hamiltonian of IBM-1 has three symmetries of U(5), O(6) and SU(3) (kassim *et al.*, 2016; Su Youn Lee *et al.*, 2017). The even – even $^{90.94}$ Mo isotopes are near to the magic number for neutrons at z =50, while the number of protons in the open shell less than the magic number 50. The $^{92}_{42}Mo_{50}$ isotope has the magic number 50 that's make it more stable than $^{90}_{42}Mo_{48}$ and $^{90}_{42}Mo_{52}$.

Ahmed A. Al-Rubaiee of physics-college of science –university of Mustansiriya iraq Email:omaralgadiry@yahoo.com-

II. The Interacting Boson Model

In term of s and d bosons operators the IBM-1 Hamiltonian can be written as (Arima and Iachello, Ann, 1978; Arima and Iachello, phys, 1978; Kassim *et al.*, 2018; Arima and Iachello, 1981; Iachello ,1981; Mohammed and Al-shimmery, 2011):

$$\begin{split} H &= \varepsilon_{s} \ (s^{+} \ . \ s^{-}) + \varepsilon_{d} \ (d^{+} \ . \ d^{-}) + \sum_{L=0,2,4} 1/2 \ (2L+1)^{1/2} \\ C_{L} \times \left[\left[\ d^{+} \times d^{+} \right]^{(L)} \times \left[\ \tilde{d} \times \tilde{d} \ \right]^{(L)} \right]^{(0)} \ + \frac{1}{\sqrt{2}} \ v_{2} \left[\ [d^{+} \times d^{+} \]^{(2)} \times \left[\ \tilde{d} \times \tilde{s} \ \right]^{(2)} \right]^{(2)} \\ &+ \left[d^{+} \times s^{+} \ \right]^{(2)} \times \left[\ \tilde{d} \times \tilde{d} \ \right]^{(2)} \right]^{(0)} + \frac{1}{2} \ v_{0} \left[\ [d^{+} \times d^{+} \]^{(0)} \times \left[\ \tilde{s} \times \tilde{s} \ \right]^{(0)} \\ &+ \left[s^{+} \times s^{+} \ \right]^{(0)} \times \left[\ \tilde{d} \times \tilde{d} \ \right]^{(0)} \right]^{(0)} + \frac{1}{2} \ u_{0} \ \left[\left[s^{+} \times s^{+} \ \right]^{(0)} \times \left[\ \tilde{s} \times \tilde{s} \ \right]^{(0)} \right]^{(0)} \\ &+ u_{2} \ \left[\left[d^{+} \times s^{+} \ \right]^{(2)} \times \left[\ \tilde{d} \times \tilde{s} \ \right]^{(2)} \right]^{(0)} \ \dots \ (1) \end{split}$$

III. Dynamical Symmetry U(5)

Hamiltonian operator for this dynamical symmetry according to the following equation (Casten and Warner, 1988; sharrad *et al.*, 2013)

$$\widehat{H} = \varepsilon \widehat{n}_d + a_1(\widehat{L},\widehat{L}) + a_3(\widehat{T}_3,\widehat{T}_3) + a_4(\widehat{T}_4,\widehat{T}_4)$$
.....(2)

The eigen values for this symmetry can be given as (Bonatsos, 1988) :

 $U(5): E(n_{d}, v, L) = \varepsilon n_{d} + k_{1}n_{d}(n_{d} + 4) + k_{4}v(v + 3) + k_{5}L(L+1) \dots (3)$

The vibrational dynamical symmetry represented by the sub – group U(5) and its quantum numbers that make it has diagonal attribute could be described as : (Shelley *et al.*, 2015).

U (6) \supset	$\mathrm{U}\left(5\right) \supset$	$O~(5)\supset~O~(3)\supset O~(2)$	

	\downarrow	\downarrow
	M_L	L
v,n\Delta	n _d] N [

Where [N] is number of boson ($N = N\pi + N\nu$).

n _d	=	Ν	,	Ν	_	1,	 ,	1,0
							 (5)

 $v = n_d, n_d - 2, -, 1 \text{ or } 0 (n_d \text{ odd or even})$ (6)

 (ν) is called seniority and it represents the number of d- type bosons that are not coupled to zero angular momentum . ($n\Delta$) is the number of triplet boson that are related to zero angular momentum this quantum number is added because there are many levels having the same angular momentum . So , it would be a transition from partial group O(5) to O(3) not fully decomposable .

 $I=\lambda,\lambda+1,\ldots,2\lambda-2,2\lambda$ (7)

(λ) wave function symbol ; the term (2 λ -1) is not shown because it doesn't full fill the symmetry attribute :

$\lambda = v - 3n\Delta$	 (8)
−I≤M _I ≤I	 (9)

IV. Results and Discussion

1. Energy levels

The experimental values of " $R_{4/2}$ = (E_4^+/E_2^+) of low lying energy levels" for ${}^{90}Mo$, ${}^{92}Mo$ and ${}^{94}Mo$ isotopes are 2. 1, 1.51 and 1.81, respectively. From this values we have identified U(5) symmetry in the ${}^{90}Mo$, ${}^{92}Mo$ and ${}^{94}Mo$ neuclei. Table(1) shows theoretical and experimental values for $R = (E 4_1^+ / E 2_1^+)$. The energy levels band (0⁺, 2⁺, 4⁺, 6⁺, 8⁺) for ${}^{90-94}Mo$ isotopes have been calculated by using the equation (2).

The ${}^{90}_{42}Mo_{48}$ nucleus has 42 protons and 48 neutrons. thus both its proton bosons and neutron bosons correspond to pairs of holes, taking the values $N\pi = (50 - 42)/2 = 4$ and Nv = (50 - 48)/2 = 1

The ${}^{90}_{42}Mo_{50}$ nucleus has 42 protons and 50 neutrons (magic number) that's make it more stable than ${}^{90}_{42}Mo_{48}$ and ${}^{94}_{42}Mo_{52}$ nuclei. The ${}^{94}_{42}Mo_{52}$ nucleus has 42 proton and 52 neutrons, thus its proton bosons correspond to pairs of holes, while its neutron bosons correspond to pairs of

particles , taking values $~N\pi = (50-42$) /2 = 4 and $N\nu = (52-50$) /2 = 1

Table 1 . Theoretical and experimental values of " R4/2 =($E \downarrow 4_1^+ / E 2_1^+$)" For ${}^{90-94}$ Mo isotopes

Nucl	IBM-1			Exp			
	$E(2_{1}^{+})$	$E(4_{1}^{+})$	$E(4_1^+)/E(2_1^+)$	$E(2_{1}^{+})$	$E(4_{1}^{+})$	$E(4_1^+)/E(2_1^+)$	
⁹⁰ Mo	0.896	1.905	2.12	947.97	2002.06	2.1	
⁹² Mo	1.509	1.824	1.21	1509.51	2282.61	1.51	
⁹⁴ Mo	0.873	1.846	2.1	871.1	1573.76	1.81	

pairs of particles , taking values $\ N\pi = (50-42)/2 = 4$ and $N\nu = (\ 52-50)/2 = 1$.

The parameters have been calculated to find the energy levels (2^+ , 4^+ , 6^+ , 8^+) and compard with the experimental values [NDS ENSDF for experimental data]. Table 2 shows the values of these parameters .

Table 2 .The values of the parameters that used in IBM-1 calculations for the energy states of $^{90-94}$ Mo isotopes .

Nucleus	EPS	Р.Р	Ι.Ι	Q.Q	T3.T3	T4. T4
⁹⁰ Mo	0.7856	0.000	0.0172	0.000	- 0.1530	0.0172
⁹² Mo	0.7510	0.000	0.0325	0.000	- 0.1924	0.1811
⁹⁴ Mo	0.7556	0.000	0.0172	0.000	- 0.1530	0.1270

The calculated states of g-band, $\beta-band$ and $\gamma-band$ and the experimental data of the states for $^{90-94}$ Mo isotopes are shown in figures . 1, 2 and 3. There are good agreements for calculated states with the experimental data [NDS ENSDF for experimental data]. The" interacting boson model (IBM-1)" was successfuled in predicting the g-, β -and γ -bands for $^{90-94}$ Mo isotopes as presented in Tables 3,4 and 5.

Table 3 . The g- band for ${}^{90-94}$ Mo nuclei (in MeV)

Jπ	90 42 M 048		$^{92}_{42}Mo_{50}$		⁹⁴ ₄₂ Mo ₅₂	
	IBM-1	Exp.	IBM-1	Exp.	IBM-1	Exp.
0+	0.0	0.0	0.0	0.0	0.0	0.0
2+	0.896	0.947	1.509	1.509	0.873	0.871
4+	1.905	2.002	1.824	2.282	1.846	1.573
6+	2.937	2.811	2.668	2.612	2.417	2.423
8+	3.634	2.874	3.828	2.760	3.113	2.955

Table 4. The β - band for ${}^{90-94}$ Mo nuclei (in MeV)

јπ	90 42 M 048		⁹² ₄₂ Mo ₅₀		94 42 Mo ₅₂	
	IBM-1	Exp.	IBM-1	Exp.	IBM-1	Exp.
0+	2.461	2.450	2.796	2.519	1.962	1.741
2+	2.702	2.613	2.807	3.091	2.131	1.864
4+	2.959		3.044		2.416	2.294
6+	3.474		3.899		2.925	2.872
8+	4.237		5.059		3.675	

Table 5. The γ - band for $^{90-94}$ Mo nuclei (in MeV)

	90 42 M 048		⁹² ₄₂ Mo ₅₀		⁹⁴ / ₄₂ Mo ₅₂	
Ju	IBM-1	Exp.	IBM-1	Exp.	IBM-1	Exp.
0+	1.953	1.979	3.352	3.841	2.898	3.320
2+	1.571	1.896	3.239	3.542	2.613	2.067
3+	2.235	2.432	2.530	2.849	3.175	2.805
4+	2.417		3.363	3.876	2.916	2.564
5+	3.189	2.548	3.431	2.526	3.184	3.447
6+	2.932		4.208		3.424	3.165
7+	3.255	3.355	3.869	3.624	3.781	
8+	4 1 5 9		5 367		4.156	

Fig 1. The calculated states and available experimental data [NDS ENSDF for experimental data] for $\frac{90}{42}$ Mo48 nucleus .

Fig 2 The calculated states and available experimental data [NDS ENSDF for experimental data] for ${}^{92}_{42}Mo50$ nucleus .

Fig 3. The calculated states and available experimental data [NDS ENSDF for experimental data] for ${}^{94}_{42}Mo_{52}$ nucleus.

2.The B(E2) transitions value in U(5) symmetry

The transition is taken between the states $\mid [N] (n_d) \ vn\Delta \ IM_I > \ of this line where the transition operator <math display="inline">(T^{E2})$ can be obtain form :

Where α_2 and β_2 are parameters related to α_2 . (Kassim and Sharrad, 2014; Hossain *et al.*, 2015).

B (E2;
$$n_d+1$$
, $\nu = n_d+1$, $n\Delta = 0$; $I = 2n_d + 2 \rightarrow n_d$, $\nu = n_d$,
 $n\Delta = 0, I = 2n_d) \alpha_2^2 \frac{I+2}{2} \times \frac{2N-1}{2}$(11)

Notice that only the first term of \hat{T}^{E2} is contributes. This is due to the fact that the tates in this limiting symmetry are characterized by the fixed number of d – bosons.

B (E2; $2_1^+ \rightarrow o_1^+$)= $\alpha_2^2 N$ (12)

Table (6) . shows the calculated parameters ($\alpha_2 and \beta 2$) which were obtained in the present work . The calculated values of "the reduced probability $B(E_2)$ transitions" and the experimental data(Bonatsos, 1988) are presented in Table (7) . for $^{90-94}\,Mo$.

Table 6	Table 6. The parameters of T E2 (in e b)				
Nucleus	α2	β2			
⁹⁰ Mo	0.13	- 0.065			
⁹² Mo	0.13	- 0.06			
⁹⁴ Mo	0.13	-0.07			

Table 7 . B(E2) values $$ for $^{90-94}Mo$ nuclei (in e^2b^2) [NDS ENSDF for experimental data]							
T: TE	⁹⁰ Mo		⁹² Mo		⁹⁴ Mo		
JI – JI	IBM-1	Exp.	IBM-1	Exp.	IBM-1	Exp.	
$2^+_1 \rightarrow o^+_1$	1.450		1.484	1.493	1.41	1.40	
$4_1^+ \rightarrow 2_1^+$	2.403		2.18	4.267	2.10	2.26	
$2^+_2 \rightarrow 2^+_1$	0.356		0.343	0.01	0.366		
$2^+_2 \rightarrow o^+_1$	0.217		0.210		0.223	0.035	
$2^+_3 \rightarrow 2^+_1$	0.0001		0.0	0.003	0.002	0.027	
$2^+_3 \rightarrow o^+_1$	0.0		0.0		0.0	0.192	

V. Conclusion

The energy states for positive parity for ^{90}MO , ^{92}MO and ^{94}MO neuclei have been calculated by "using interacting boson model-1"and then used the same model (IBM-1)to calculate "the reduced probability of B(E2)" transition for the isotopes above. The calculated energy levels and " B(E2)" of $^{90-94}$ Mo nuclei shows a good agreement with the experimental data . From the ratio $R_{4/2}$ the symmetry of $^{90-94}$ Mo isotopes are the vibrational symmetry U(5). The calculations of the energy levels showed that the energy levels of isotope $^{92}Mo_{50}$ was highest than the energy levels of the isotopes 90 Mo₄₈ and $^{94}Mo_{52}$ because the isotope $^{92}Mo_{50}$ have the magic number for the Neutrons and cause to high stable for this isotope .

VI. References

Arima, A. and Iachello, F. (1978). New Symmetry in the sd Boson Model of Nuclei: The Group O(6). phys. rev. let., 40, 385

Arima, A. and Iachello, F. (1978) .Interacting boson model of collective nuclear states II. The rotational limit . Ann. of Phys. ,Vol. 111, Issue 1,P. 201-238

Arima, A. and Iachello, F. (1981) . The Interacting Boson Model. Ann . Rev. Nucl. part . sci . , 31 , 75 .

Casten, R. F . and Warner, D.D. (1988) . The interacting boson approximation. Rev. mod . phys . , 60:389 .

Hasan, M. ; Tabassum M. ; Roy, P.K. ; Tasnim, M.M.; Sakiband, K.N. and Islam, J. (2017) . Study of B(E2) Values of Evev-Even ${}^{72-78}_{32}Ge$ Isotopes Using Interacting Boson Mobel-1 . American Journal of Modern Physics; 6(4): P. 76-80 .

Hossain, I. ; Ahmed, I. M. ; Sharrad, F. I. ; Abdullah, H. Y. ; Salman, A. D. and Al Dahan, N. (2015) . Yrast states and B (E2) Values of Even $^{100-102}$ Ru Isotopes using Interacting boson model (IBM-1) . Chiang Mai J . Sci. , 42 (4) : P . 996 –1004 .

Hummadi, S. (2017) . Study of nuclear structures for Nd 148 ,150 ,152 isotopes by using IBM-1. Al-Mustansiriyah Journal of Science ,Vol. 28, Issue 2 . Iachello, F. (1981). Group theory and Nuclear spectroscopy . lecture notes in physics Nuclear spectroscopy , springer , Berlin .

Iachello, F. and Arima, A. (1987). The interacting boson model . combridge university press cambridge, P. 52-54.

Islam, J . and Hossain, I. (2016) . Application of interacting boson model- 1 for $even N = 68 \dots 78$ for Te

isotopes . Problems of atomic science and technology , P. 33– 37 .

Kassim, H. H. ; Mohammed, Ali A. A. ; Sharrad, F. I. ; Hossain, I. and Khalid, Jassim, S. (2016). Nuclear structure of even 178 - 182 Hf isotopes under the framework of interacting boson model (IBM-1). Iranian journal of science and technology, transactions A: science

Kassim, H. H. and Sharrad, F.I. (2014). Energy levels and electromagnetic transition of ^{190–196}Pt nuclei. International Journal of Modern Physics E23:1450070. DOI: https://doi.org/10.1142/S0218301314500700 . Kassim, H. H.; Mohammed-Ali, A. A.; Abed Al-Jubbori, M.; sharrad, F. I.; Ahmed A.S. and Hossain, I. (2018). Calculation of some of the nuclear properties of even-even ^{172–176} Hf isotopes using IBM-1. J.Natn. Sci. Foundation Sri Lanka, P. 3-10.

Mohammed Abdul Ameer and Mushtaq, A. H. (2011). IBM–1 investigation for the even – even 180 - 190 W isotopes. Armenian Journal of physics, vol. 4, issue 3, P. 146 - 153.

NDS ENSDF for experimental data.

Sharrad, F. I. ; Abdullah, H. Y.; Al-Dahan, N.; Umran, N. M. ; Okhunov, A. A. and Abu kassim, H. (2013). Low – lying state of ¹⁸⁴ W and ¹⁸⁴ Os nuclei. Chinese physics C. vol. 37, No. 3,034101. Shelley, A.; Hossain, I.; Sharrad, F. I. ; Abdullah, H. Y. and Saeed, M. A. (2015). Yrast states and Electromagnetic reduce transition properties of ¹²²Te by Means of Interacting Boson Model -1. problems of atomic science and technology.

SU YOUN LEE; YOUNG JUN LEE AND LEE, J.H. (2017) . THE STUDY OF STRUCTURE IN 224–234 THORIUM NUCLEI WITHIN THE FRAMEWORK IBM .EPJ WEB CONFERENCES 146, 10016.