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Abstract 
      The modes are solutions of Maxwell's equations depending on boundary conditions of the waveguide (step-index 

fiber with 
1

nn   for core and 
2

nn   for cladding). In this paper, the general characteristic equation was deduced. This 

equation was used to determine modes TE, TM, and the hybrid modes EH and HE. Also, the linear polarization modes 

of the weakly guiding approximation 
21

nn   were illustrated. The results proved that: the mode spot size, the 

propagation constants, the eigenvalues, and the nonlinearity depend on the mode order and the normalized frequency. 

Thereafter, the simulation proved that the number of modes is related to the normalized frequency in a quadratic 

function.     

ations, fiber modes, normalized frequency.: Maxwell's equKeywords 

 

 تحميل الأنماط في الألياف البصرية ذات معامل الانكسار المتغير فجائيا
 الخلاصة

1الأنماط هي حمول لمعادلات ماكسويل باعتماد الشروط الحدودية لدليل الموجة )ليف  برفرذ  و معامفل انكسفار       
n  2لمقمف  و

n  لممحفيط.  تفف  في هف ا
، وكفف لت تففف HEو  EHوالدجينففة    TMوالمستعر ففة ماناطيسففيا TEالبحففا اسففتنتام المعادلففة المميففة  العامففة ومندففا تففف تحديففد الأنمففاط المستعر ففة كدربا يففا 

21تحديد الحمول لمحالة التقريبية 
nn  ا  الخطي والتي تعطي ما يسمى بالاستقطLP ،أثبتت النتا ج أن: تركيف  بقعفة الفنمط، ثابفت الانتشفار، القفيف ال اتيفة  

 واللاخطية تعتمد عمى مرتبة النمط وأن عدد الأنماط يرتبط بعلاقة تربيعية مع تردد القطع المعاير والتي تف حسابدا خلال المحاكا  
 

1.Introduction 

      The fact is that light can propagate inside an optical 

fiber only as a set of separate beams, or rays. In other 

words, if we were able to look inside an optical fiber, 

we would see a set of beams traveling at distinct 

propagating angles, , ranging from zero to the critical 

value, c [1]. These different beams are called modes. 

We distinguish modes by their propagating angles and 

we use the word order to designate the specific mode. 

The rule is this: the smaller the mode’s propagating 

angle, the lower the order of the mode. Thus, the mode 

traveling precisely along the fiber’s central axis is the 

zero-order mode and the mode traveling at the critical 

propagation angle is the highest order mode possible for 

this fiber [2]. The zero-order mode is also called the 

fundamental mode. Many modes can exist within a 

fiber, and so a fiber having many modes is called a 

multimode fiber [3]. Recently, silica fibers have been 

produced that permit the transmission of optical signals 

over several kilometers. In general, these fibers support 

many modes, which propagate at different velocities. 

Since this causes signal distortion over long distances, 

fibers that transmit only a limited number of modes are 

of special interest [4]. A fiber waveguide consists of a 

thin central glass core surrounded by a glass cladding of 

slightly lower refractive index. Most modes can be 

suppressed by making the core thin and the index 

different between core and cladding small. Typically, a 

difference of a few parts in a thousand is feasible [5]. 

This avoids propagation of most modes. The modes that 

do propagate are weakly guided, but in general the 

guidance is sufficient to negotiate bends with radii of 

tens of centimeters [6]. Maxwell's equations have exact 
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solutions for the dielectric cylinder, but even with the 

simplifying assumption that the cladding be infinitely 

thick these solutions are too complicated to be 

evaluated without computer. Recent efforts in 

simplifying the theory for weakly guided modes had 

promising results, but in the region of interest, they did 

not lead to the kind of simple formulas one would wish 

to have for fiber design work [7,8]. The following paper 

is aimed at such formulas and functions. It is meant as a 

help for engineering applications directed toward fiber 

communication systems. Most results are valid for all 

frequencies and propagation conditions-even at cutoff-

with an accuracy of the order of the index difference 

between core and cladding [9].In this paper, the general 

characteristics equation of modes in step-index fiber 

was analyzed. It was reduced to simple forms for the 

cases TM and TM modes. Also, the weakly guiding 

property give a generalized characteristics equation to 

conclude the propagated modes in step-index fibers. 

The properties of the modes were examined under the 

constraints of the characteristics equation.    

 

2.The Characteristic Equation 

     Now, the wave propagation equation will be 

illustrated but the vectorial nature of light will be not 

assumed. Instead of solving Maxwell's equations, the 

solution of the following Helmholtz equation in 

cylindrical coordinates will be discussed [9] 

 
 

where r ,  , and z  are respectively the polar, the 

azimuthal and the axial coordinates; F  is the field; 

 /2
0
k  is the wavenumber in vacuum; the index of 

refraction for step-index fiber n  is 1
n  for ar   and 2

n  

for ar   where a  is the core radius. The electric and 

magnetic fields must be continuous and so must be their 

derivatives [10]. Translating this concept to the scalar 

theory of light, the components F  and rF  /  must be 

continuous. Depending on the continuity and the 

boundary conditions, the solutions of Eq.(1) are [8] 

 

 

where   is an integer number, 
J  is the Bessel function 

of the first kind, 
K  is the modified Bessel function of 

second kind, and [11] 

 
 

where k  is the longitudinal propagation constant,   is 

the transverse propagation constant, and 


 is the 

eigenvalue. The Bessel functions are chosen so that F  

is always limited and approaches zero as r . The 

choice of k  and   is not free, indeed the boundary 

conditions at r  implies that [12]  

 

 

where kaX   and 
aY 

. Eq.(4) is called the 

characteristics equation. An important quantity for 

fibers that is the normalized frequency parameter can be 

defined as [11] 

 

 
If one wants to has solutions with k  and   real, the 

intersection of the right hand side and the left hand side 

of Eq.(4) with VX   must be found. For each   we 

have different intersection points that are 
M  in 

number. When   increases 
M  decreases until it 

become zero, we call max
  the value of   for which 

Eq.(4) has no solution ( 0


M ). It is interesting to 

notice that for 0  we always find at least one 

solution for any value of  V , when 405.2V  only one 

mode is present and the fiber is a monomodal 

waveguide. This would not be possible in a waveguide 

made with reflective walls whose boundary conditions 

impose that the field must be zero at ar  . We remark 

that Eq.(4) has also imaginary solution of X  that will 

give raise to imaginary values of k  that corresponds to 

evanescent waves.  

 

3. Fiber Modes 

       A graph of Eq.(4) in ),( Kaa coordinates is a 

combination of Bessel function curves. The graph of 

Eq.(5) is a circle with radius V . The intersects between 

the two curves are solutions. Each intersect is 

designated as a mode that can be excited and gives such 
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information as the cutoff conditions and the cross 

sectional distribution of light in the fiber. The solutions 

of the characteristic equation vary a great deal 

depending on whether 0  or 0 .  

For meridional rays that pass through the fiber axis 
0 , the characteristics equations of TE and TM 

modes, i.e. Eq.(4), become 

 

The difference between these equation is the ratio 
2

21
)/( nn . In the weak guiding approximation 21

nn  , 

these two modes will be degenerate. Note that, in the 

TE modes we have the electric field 0
z

E , while in 

the TM modes we have the magnetic field 0
z

H .  

In general, for 0  the modes is called as skew rays, 

and formal notation is HE and EH.  For weakly guiding 

approximation, the linear polarization (LP) modes can 

be expressed as sum of TE, TM, HE, EH that become 

degenerate for small 21
nnn  . In this case, Eq.(4) 

will be  

 

where m  is defined as: 1  for TE and TM modes, 1  

for EH modes, and 1  for HE modes. However, the 

LP modes are related to the other modes representation 

as [13] 

 
 

The cutoff frequency for each propagation mode can be 

calculated from Eq.(7). A mode is said to be cut off 

when its field ceases to be evanescent in the cladding. 

Hence, the phase velocity of the field becomes equal to 

that of a plane wave propagating in the cladding 

material. Accordingly, the cutoff frequency is found by 

setting   equal to zero. In general, the cutoff frequency 

are obtained via letting 0Y and therefore VX  . 

For TE and TM modes they are equal to the positive 

roots of 0)(
0

VJ . So if p
r

0  is the pth positive root of 

)(
0

VJ for 
1p

, the cutoff frequency for op
TE

 and 

op
TM

 is op
rV 

0 .  For example 1o
TE  and 01

TM have the 

cutoff frequency 405.2
01
r . For p

EH
 modes the cutoff 

frequencies are obtained via the equation 0)( VJ
  for 

1  and 
1p

. So the cutoff frequency of the mode 

p
EH

  is p
rV



0  which is the pth positive root of )(VJ

 .  

The normalized propagation parameter is given by 

 2

VYb 
[10]. An advantage of taking b  as a variable 

is that b  has a finite range from 0 to 1. Using this 

substitution, the value of Xka   is calculated from  b  

as VbX  1  and the characteristics equation will be  

 
 

The last equation may be used to determine the 

solutions in terms the normalized propagation constant 

and the normalized frequency.  

The effective mode area is defined as [7] 

 

where  F  is the field distribution that determines from 

Eq.(2) by setting 0z . The parameter eff
A

 is very 

important to compute the nonlinearty factor

eff
cANw /

20


, where 2
N  is the third-order nonlinear 

refractive index. Since each mode has different 

distribution, such that the nonlinearity factor is a 

function of mode index.  

 

4. Results and Discussion 
     Our simulation is characterized by many numbers of 

different parameters, for completeness, we list a typical 

parameter set below 

/Wm106.2 0,155  , 49.1  ,  5.1 220

2021

 Nnn 

 

There are another parameters that will be changed 

through simulation depending on the mode order and 

the normalized frequency. Figs.(1) and (2) represent the 

logitudenal and the transverse power distribution of the 
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mode spot for different mode orders that are calculated 

using the relations Eqs.(2) and (9). It is clear that the 

mode distribution becomes more complicated if the 

mode order increases. This complication is happen by 

increasing the Bessel function order or by increasing 

the root order of a certain Bessel function. The spot 

size, in general, is more expanded for the higher order 

modes, so a part from mode energy will be outside the 

fiber core. As a consequence, the fundamentl mode 

01
LP  has the larger power that will be confined in the 

core. In other words, the higher order modes is the 

higher energy loss.Fig.(3) obtains the number of roots 

and the number of modes as function of the normalized 

frequency. The number of roots changes as linear 

function with the normalized frequency. That is; the 

increasing of normalized frequency will increase 

linearly the number of roots, but there are many 

degenerate modes that concide with each other, this will 

make the number of modes as a quadritic function of 

normalized frequency. This quadritic form is calculated 

to be: 22.038.05.0 2  VVM . However, the 

appoximated analytic form in the scientific litriture is 
25.0 VM  , see [5,11].  

 Fig.(4) explains the parameters: k ,  , 


, and 

eff
A

 as functions of normalized frequency. Since 

)( 2222  kaV
, then the increasing of k  will 

decrease 


 for the same V  and vice versa and this 

cirtianly depends on the mode order. The propagation 

constant k  decreases with V , this behavior is 

attributed to the fact that the core radius is increased 

and as a result the mode may be apart from the fiber 

axis. This reduction must be associated with increasing 

the 


 value. Also, increasing the mode order will raise 

the k  value and reduce the 


 value. This behavior is 

attributed to the distinction of the mode spot size with 

respect to the core dimension. The eigenvalue inceases 

slightely with the normalized frequency for the lower 

modes, but the change will be strong at the higher order 

modes. This is an acceptable fact where the the lower 

order modes are propagted near the fiber axis and vice 

versa. The effective area of the modes increases with 

normalized frequency. This behavior is attributed to the 

increasing in core radius that increases the confinement 

factor of mode. The higher order modes have the same 

behavior but the satisfied effective areas are small. In 

general, the effective area is decreased with increasing 

normalized frequency or mode order. So, the 

nonlinearity factor is higher for higher order modes and 

for smaller normalized frequency.    

5. Conclusions 
       We conclude this paper by: the higher order modes 

have a more complicated spot size and vice versa. The 

increasing of normalized frequency will increase the 

number of modes. The propagation constants and 

eigenvalues are slightly affected by normalized 

frequncy variation for the lower order modes, while the 

affection is strog for the higher order modes. This 

means that the mode tend to propagte  apart from fiber 

axis by increasing its order. Each mode faces a 

nonlinearity that inceases with its order. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(1): the trasverse power distribution for  different 

modes. 

 

Fig.(2): the longitudinal distribution of power for 

different modes. 
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Fig.(3): the number of roots and number of modes as 

functions of normalized frequency. 

 

Fig.(4): , , , and  as functions of normalized 

frequency. 

 


