ISSN 1991-8690

الترقيم الدولي 8690 - 1991

website: http://jsci.utq.edu.iq Email: utjsci@utq.edu.iq

On $S\beta$ -continuous and $S^*\beta$ -continuous Functions

B. K. Mahmood

Salah Al –Deen's Education - The Ministry of Education - Iraq

Abstract

In this paper we intoduce and investigate a new class of sets and functions called supra β - open sets, $S\beta$ - continuous functions and $S^*\beta$ - continuous.

حول الدوال الفوقية المستمرة والدوال المحيرة الفوقية المستمرة

بلقيس خليل محمود وزارة التربية – تربية صلاح الدين

المستخلص

الهدف من هذا البحث هو تقديم صف جديد من المجموعات والدوال بين الفضاءات التبولوجية تسمى مجموعات بيتا المفتوحة الفوقية و الدوال الفوقية المستمرة والدوال المحبرة الفوقية المستمرة.

1- Introduction

In 1983, A.S. Mashhour etal. [2] introduced the supra topological spaces and studied S- continuous functions and S^* - continuous functions. In 1987, M. E. Abd El-Monsef etal. [1] introduced the fuzzy supra topological spaces and studies fuzzy supra-continuous functions and obtained some properties and characterizations. In 1996, Keun [4] introduced fuzzy S- continuous, fuzzy S- open and fuzzy S- closed maps and established a number of characterizations. In 2008, R. Devi etal. [3] introduced supra S- open sets and S- continuous functions. Now we introduce the concept of supra S- open sets, S- continuous functions and S- continuous and investigate some of the basic properties for this class of functions.

2- Preliminaries and basic definitions:

All topological spaces considered in this paper lack any separation axioms unless explicitly stated. The topology of a space is denoted by \Im and (X,\Im) will be replaced by X if there is no chance for confusion. For any subset $A\subseteq X$, the closure and the interior of A in X with respect to \Im are denoted by cl(A) and int(A) respectively. The complement of A is denoted by X-A.

Definition 1: [2] A sub family \mathfrak{I}^* of X is said to be a supra topology on X if: (1) X, $\phi \in \mathfrak{I}^*$

(2) If $A_i \in \mathfrak{I}^*$ for all $i \in J$, then $\bigcup A_i \in \mathfrak{I}^*$, (X,\mathfrak{I}^*) is called a supra topological space. The elements of \mathfrak{I}^* are called supra open sets in (X,\mathfrak{I}^*) and complement of a supra open set is called a supra closed set.

Definition 2: [2] the supra clousre of a set A is denoted by supra cl(A) and defined as supra $cl(A) = \bigcap \{B : B \text{ is a supra closed and } A \subseteq B \}$.

The supra interior of a set A is denoted by supra int(A) and defined as supra $int(A) = \bigcup \{B : B \text{ is a } \Im \text{ supra open and } A \supset B \}$.

Definition 3: [2] Let (X, \mathfrak{I}) be a topological space and \mathfrak{I}^* be a supra topology on X. We call \mathfrak{I}^* a supra topology associated with \mathfrak{I} if $\mathfrak{I} \subset \mathfrak{I}^*$.

Definition 4: [2] Let (X,\mathfrak{T}) and (Y,σ) be two topological spaces. Let \mathfrak{T}^* and σ^* be associated supra topologies with \mathfrak{T} and σ respectively. Let $f:X\to Y$ be a function from X into Y, then f is called a S-continuous function if the inverse image of each open set in Y is supra open in (X,\mathfrak{T}^*) .

Definition 5: [3] Let (X, \mathfrak{I}^*) be a supra topological space. A set A is called supra semiopen set if $A \subseteq \text{supra } cl(\text{supra } int(A))$.

Definition 6: Let (X, \mathfrak{I}^*) be a supra topological space. A set A is called supra pre-open set if $A \subseteq \text{supra } int(\text{supra } cl(A))$.

3- Basic properties of supra β - open sets:

In this section we introduce one new class of sets.

Definition 7: Let (X, \mathfrak{J}^*) be a supra topological space. A subset A is called supra β - open set if $A \subseteq \text{supra } cl(\text{supra } int(\text{supra } cl(A)))$.

And we notice that the complement of a supra β -open set is a supra β -closed set.

Theorem 3.1: Every supra open set is supra β - open set.

Proof:

Let A be a supra open set in (X,\mathfrak{T}^*) . Since $A\subseteq \operatorname{supra} cl(A)$, then $\operatorname{supra} cl(A)\subseteq \operatorname{supra} cl(\operatorname{supra} int(\operatorname{supra} cl(A)))$. Hence $A\subseteq \operatorname{supra} cl(\operatorname{supra} int(\operatorname{supra} cl(A)))$.

 \therefore A is supra β - open set.

The converse of the above theorem is not true. This is shown by the following example.

Ex 1:

Let (X, \mathfrak{I}^*) be a supra topological space, and $X = \{1, 2, 3\}$, $\mathfrak{I}^* = \{\phi, X, \{1\}\}$. The set $\{1, 2\}$ is a supra β - open set, but not a supra open.

Theorem 3.2: Every supra *pre*- open set is supra β - open set.

Proof

Let A be a supra *pre*-open set in (X,\mathfrak{F}^*) , then $A \subseteq \text{supra } int(\text{supra } cl(A))$.

Since supra $int(supra\ cl(A))\subseteq supra\ cl(supra\ int(supra\ cl(A)))$, this implies that , $A\subseteq supra\ cl(supra\ int(supra\ cl(A)))$

 \therefore A is supra β - open set.

Th converse of the last theorem is not true, we show that by the following example.

Ex 2:

Let (X, \mathfrak{I}^*) be a supra topological space, Where $X=\{1,2,3,4\}$ and $\mathfrak{I}^*=\{\phi,X,\{1\},\{3,4\},\{1,3,4\}\}$. Here $A=\{2,3,4\}$ is a supra β - open set, but not a supra pre-open set.

In [3] the second part of the following theorem is not nesscery holding but in this paper is holding.

Theorem 3.3:

- (i) Finite union of supra β -open sets is always a supra β -open set.
- (ii) Finite intersection of supra β -open sets is always a supra β -open set

Proof:

(i) Let A and B be two supra β -open sets. Then

 $A \subseteq \text{supra } cl(\text{supra } int(\text{supra } cl(A))) \text{ and } B \subseteq \text{supra } cl(\text{supra } int(\text{supra } cl(B)))$

This implies, $A \cup B \subseteq \text{supra } cl(\text{supra } int(\text{supra } cl(A \cup B)))$

- \therefore $A \cup B$ is a supra β -open set.
- (ii) Let A and B be two supra β -open sets. Then

 $A \subseteq \text{supra } cl(\text{supra } int(\text{supra } cl(A)))$ and $B \subseteq \text{supra } cl(\text{supra } int(\text{supra } cl(B)))$

This implies, $A \cap B \subseteq \text{supra } cl(\text{supra } int(\text{supra } cl(A \cap B)))$

 \therefore $A \cap B$ is a supra β -open set.

Corollary:

- (i) Finite intersection of supra β -closed sets is always a supra β -closed set.
- (ii) Finite union of supra β -closed sets is always a supra β -closed set.

Definition 8: The supra β -closer of a set A is denoted by supra β -cl(A) and defined as supra β -closed set and $A \subset B$ }.

The supra β -interior of a set A is denoted by supra β -int(A) and defined as supra β -int(A) = $\bigcup \{B : B \text{ is a supra } \beta$ -open set and $A \supseteq B \}$.

Remark: It is clear that supra β -int(A) is a supra β -open set and supra β -closed set.

Theorem 3.4:

- (i) $X \text{supra } \beta int(A) = \text{supra } \beta cl(X A)$.
- (ii) $X \text{supra } \beta cl(A) = \text{supra } \beta int(X A)$.

Proof: obvious

Theorem 3.5: The following statements are true for every A and B sets:

- (1) supra β -int(A) \bigcup supra β -int(B) = supra β -int($A \bigcup B$).
- (2) supra β -cl(A) \cap supra β -cl(B) = supra β - $cl(A \cap B)$.

Proof:

- (1) Let supra β -int(A) = \bigcup {C : C is a supra β -open set and $A \supseteq C$ } and supra β -int(B) = \bigcup {D : D is a supra β -open set and $B \supseteq D$ }, then the union of these sets = \bigcup { $C \bigcup D$: $C \bigcup D$ is a supra β -open set and $A \bigcup B \supseteq C \bigcup D$ }, if $K = C \bigcup D$, then supra β -int(A) \bigcup supra β -int(A) \bigcup supra β -int(A) = \bigcup { $A \cup B \supseteq K$ }.
- (2) Let supra β - $cl(A) = \bigcap \{ C : C \text{ is a supra } \beta$ -closed set and $A \subseteq C \}$ and supra β - $cl(B) = \bigcap \{ D : D \text{ is a supra } \beta$ -closed set and $B \subseteq D \}$, then the intersection of these sets $= \bigcap \{ C \cap D : C \cap D \text{ is a supra } \beta$ -closed set and $A \cap B \subseteq C \cap D \}$, if $L = C \cap D$, then supra β - $cl(A) \cup \text{supra } \beta$ - $cl(B) = \{ L : L \text{ is a supra } \beta$ -closed set and $A \cap B \subseteq L \}$.

4- SB - continuous functions:

In this section we introduce a new class of function.

Definition 9: Let (X,\mathfrak{T}) and (Y,σ) be two topological spaces and \mathfrak{T}^* be associated supra topology with \mathfrak{T} . We defined a function $f:(X,\mathfrak{T})\to (Y,\sigma)$ to be a $S\beta$ - continuous function if the inverse image of each open set in Y is a \mathfrak{T}^* - supra β - open set of X.

Theorem 4.1: Every continuous function is $S\beta$ - continuous function . **Proof**:

Let $f:(X,\mathfrak{T})\to (Y,\sigma)$ be a continuous function . Therefore $f^{-1}(A)$ is open set in X for each open set A in Y. But \mathfrak{T}^* is associated with \mathfrak{T} . That is mean $\mathfrak{T}\subset\mathfrak{T}^*$. This implies $f^{-1}(A)$ is a supra open in X. Since every supra open set is supra β - open set by (Th.3.1) . This implies $f^{-1}(A)$ is a \mathfrak{T}^* - supra β - open in X. Hence f is a $S\beta$ - continuous function .

Theorem 4.2: Every S - continuous function is $S\beta$ - continuous function. **proof:**

Let $f:(X,\mathfrak{T})\to (Y,\sigma)$ be S - continuous function . Therefore $f^{-1}(A)$ is supra open set in X for each open set A in Y. But \mathfrak{T}^* is associated with \mathfrak{T} . Since every supra open set is supra β - open set by (Th.3.1) . This implies $f^{-1}(A)$ is a \mathfrak{T}^* - supra β - open in X.

Hence f is a $S\beta$ - continuous function.

The converse of the two theorems (4.1) and (4.2) may not be true. We can show that by the following example.

Ex 3:

Let $X = \{1, 2, 3\}$ and $\mathfrak{I} = \{\phi, X, \{1, 2\}\}$ be a topology on X. The supra topology \mathfrak{I}^* is defined as follows, $\mathfrak{I}^* = \{\phi, X, \{1\}, \{1, 2\}\}$. Let $f: (X, \mathfrak{I}) \to (X, \mathfrak{I})$ where f(1) = 1, f(2) = 3, f(3) = 2. Since $f^{-1}(\{1, 2\}) = \{1, 3\}$ is a supra β - open set in X. Then f is a $S\beta$ - continuous function. But the inverse image of $\{1, 2\}$ is not open and not supra open set in X. So f is not S- continuous and not continuous function.

Theorem 4.3: Let (X,\mathfrak{I}) and (Y,σ) be two topological spaces. Let f be a function from X into Y. Let \mathfrak{I}^* be associated supra topologies with \mathfrak{I} . Then the following are equivalent:

- (1) f is $S\beta$ continuous function.
- (2) The inverse image of closed set in Y is supra β closed set in X.
- (3) Supra $\beta cl(f^{-1}(A)) \subseteq f^{-1}(cl(A))$ for every set A in Y.
- (4) $f(\text{supra } \beta \text{-}cl(A)) \subseteq cl(f(A))$ for every set A in X.
- (5) $f^{-1}(int(B)) \subseteq \text{supra } \beta cl(f^{-1}(B)) \text{ for every set } B \text{ in } Y$.

proof:

 $(1) \Rightarrow (2)$

Let A be a closed set in Y, then Y - A is open in Y. Thus, $f^{-1}(Y - A) = X - f^{-1}(A)$ is supra β - open in X. It follows that $f^{-1}(A)$ is a supra β - closed set of X. $(2) \Rightarrow (3)$

Let A be any subset of X. Since cl(A) is closed in Y, then it follows that $f^{-1}(cl(A))$ is supra β - closed in X. Therefore

 $f^{-1}(cl(A)) = \operatorname{supra} \beta - cl(f^{-1}(cl(A))) \supseteq \operatorname{supra} \beta - cl(f^{-1}(A)).$

 $(3) \Rightarrow (4)$

Let A be any subset of X. By (3) we obtain,

 $f^{-1}(cl(A)) \supseteq \text{supra } \beta - cl(f^{-1}(f(A))) \supseteq \text{supra } \beta - cl(A) \text{ and hence}$ $f(\text{supra } \beta - cl(A)) \supseteq cl(f(A)).$

 $(4) \Rightarrow (5)$

Let $f(\operatorname{supra} \beta \operatorname{-cl}(A)) \subseteq \operatorname{cl}(f(A))$ for every set A in X. Then $\operatorname{supra} \beta \operatorname{-cl}(A) \subseteq f^{-1}(\operatorname{cl}(f(A)))$, $X - \operatorname{supra} \beta \operatorname{-cl}(A) \supseteq X - f^{-1}(\operatorname{cl}(f(A)))$ and $\operatorname{supra} \beta \operatorname{-int}(X - A) \supseteq f^{-1}(\operatorname{int}(Y - f(A)))$. Then $\operatorname{supra} \beta \operatorname{-int}(f^{-1}(B)) \supseteq f^{-1}(\operatorname{int}(B))$. Therefore $f^{-1}(\operatorname{int}(B)) \subseteq \operatorname{supra} \beta \operatorname{-int}(f^{-1}(B))$, for every B in Y. $(5) \Rightarrow (1)$

Let A be an open set in Y. Therefore, $f^{-1}(int(A)) \subseteq \text{supra } \beta - int(f^{-1}(A))$, hence $f^{-1}(A) \subseteq \beta - int(f^{-1}(A))$. But by other hand, we know that, supra $\beta - int(f^{-1}(A)) \subseteq f^{-1}(A)$. Then $f^{-1}(A)$ is a supra $\beta - open$ set

Theorem 4.4: If a function $f:(X,\mathfrak{I})\to (Y,\sigma)$ is a $S\beta$ -continuous and $g:(Y,\sigma)\to (Z,\lambda)$ is continuous, then $(g\circ f)$ is $S\beta$ -continuous.

Proof:

Let A be an open set in Z. To prove that the inverse image of every open set in Z is a supra β -open set in X. Since g is continuous then $B = g^{-1}(A)$ is open set in Y, and since f is $S\beta$ -continuous then $C = f^{-1}(B)$ is a supra β -open in X. That is mean $(g \circ f)^{-1}(A) = (f^{-1} \circ g^{-1})(A) = f^{-1}(g^{-1}(A)) = f^{-1}(B) = C$. $\therefore (g \circ f)$ is a $S\beta$ -continuous function.

$\underline{5}$ - $S^*\beta$ - continuous functions :

In this section we introduce a new class of function.

Definition 10: Let (X,\mathfrak{T}) and (Y,σ) be two topological spaces and \mathfrak{T}^* , σ^* are two associated supra topologies with \mathfrak{T} , σ . We defined a function $f:(X,\mathfrak{T})\to (Y,\sigma)$ to be a $S\beta$ - continuous function if the inverse image of each σ^* -supra β -open set in Y is a \mathfrak{T}^* - supra β - open set of X.

Theorem 5.1: Every $S^*\beta$ - continuous function is $S\beta$ - continuous function .

Proof:

Let A be an open set in Y. Since every open set is supra β - open set and f is $S^*\beta$ - continuous, then f^{-1} (A) is supra β - open set in X.

 $\therefore f$ is $S\beta$ - continuous function .

Theorem 5.2: If a map $f:(X,\mathfrak{I})\to (Y,\sigma)$ is a $S^*\beta$ - continuous and $g:(Y,\sigma)\to (Z,\lambda)$ is continuous, then $(g\circ f)$ is $S^*\beta$ - continuous.

Proof:

Let A be an open set in Z. We must prove that the inverse image of every supra β - open open set in Z is a supra β - open set in X.

Since g is continuous then $B=g^{-1}(A)$ is open set in Y, and since every open set is supra β - open set, f is $S^*\beta$ - continuous then $C=f^{-1}(B)$ is a supra β - open in X. That is mean

$$(g \circ f)^{-1}(A) = (f^{-1} \circ g^{-1})(A) = f^{-1}(g^{-1}(A)) = f^{-1}(B) = C$$

 \therefore $(g \circ f)$ is a $S^*\beta$ - continuous function.

Theorem 5.3: If a function $f:(X,\mathfrak{T})\to (Y,\sigma)$ is a $S^*\beta$ - continuous and $g:(Y,\sigma)\to (Z,\lambda)$ is $S^*\beta$ - continuous, then $(g\circ f)$ is $S^*\beta$ - continuous.

Proof:

Let A be a supra β - open set set in Z. We must prove that the inverse image of every supra β - open open set in Z is a supra β - open set in X.

Since g is $S^*\beta$ - continuous then $B=g^{-1}(A)$ is supra β - open set in Y, and since f is $S^*\beta$ - continuous then $C=f^{-1}(B)$ is a supra β - open in X. That is mean

$$(g \circ f)^{-1}(A) = (f^{-1} \circ g^{-1})(A) = f^{-1}(g^{-1}(A)) = f^{-1}(B) = C$$

 \therefore $(g \circ f)$ is a $S^*\beta$ - continuous function.

References

- (1) Abd El Monsef , M.E and Ramadan ,A. E. , On fuzzy supra topological spaces , Indian J. Pure and Appl. Math. no.4 , 18(1987): 322-329 .
- (2) Devi , R. , Sampathkumar , S. and Caldas , M. , On supra $\,^{\alpha}$ open sets and $\,^{S\alpha}$ continuous function , no.2 , 16(2008) : 77-84 .
- (3) Mashhour , A. S. , Allam , A. A. , Mahmoud , F. S. and Khedr , F. H. , On supra topological spaces , Indian J. Pure and Appl. Math. no. 4 , 14(1983): 502-510.
- (4) Won Keun Min , *On fuzzy s-continuous functions* , Kangweon- Kyungki Math. J. , no. 1 , 4(1996) : 77-82