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Abstract
In this paper we construct the broken circuit complex of a hypersolvable r -arrangement A
by using the hypersolvable partition analogue and the hypersolvable ordering which respects the
hypersolvable structure .We used the minimal informations that encoded in the intersection lattice
pattern up to codimension two to define an isomorphism between the broken circuit complexes of
any two supersolvable arrangements which enable us to produce a comparison between the
structures of the broken circuit complexes of a hypersolvable arrangement and their Jambu's-

Papadima's deformed supersolvable arrangements.

Introduction

Let A ={H,..H,} be a complex hyperplane r-arrangement with complement

M(A)=C"' \Ui”:lHi ) we refer the reader to 16 [as a general reference .(Many basic facts about the

linear arrangements and their intersection poset L(A))which reverse by inclusion, )i.e.
X <Y <Y < X (and ranked by rk(X) = codim(X)(, are best understand from the more general
viewpoint of the matroid theory .An arrangement matroid is a pair M , = (A,A), by letting A be
the set of all vertices of the simplicial complex A, where A be the collection of all independent
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subarrangements of A .The" broken circuit complex)"or BC-complex( of M , is denoted by
BC.(M ,) and defined to be;

BC.(M ,) ={B < A | B contains no broken circuit}.,
where a broken circuit of a matroid M , with respect to an ordering < on the hyperplanes of A ,

is a subset X=X\H of a minimal dependent set X) with respect to the inclusion(, which is called
a circuit and H is the minimal element of X via <.

Jambu and Papadima in )1998, 13 ([and )2002, ]4 ([introduced the hypersolvable class of
arrangements as a generalization of the supersolvable Stanely class )1972, 19 ([by using the
collinear relations that encoded in the lattice intersection pattern up to codimension two

A,(A)={B c A |BI[<3}. In order to control and study the lattice intersection of a hypersolvable
arrangement A, Ali in )2007, ]1 ([drived a natural partition IT of A from the hypersolvable
analogue )definition )1.2 .((She called II a hypersolvable partition, denoted it by Hp and she
ordered the hyperlanes of A by a hypersolvable ordering )definition 1.5 (which respects the
hypersolvable analogue .The existences of such partition forms a sufficient condition to any central
arrangement to be hypersolvable arrangement .This paper has two purposes.The first is to
construct the broken circuit complex BC_(M ,)via the hyper solvable ordering as an application
of Ali's study in ]1 .

Bj 6 rner and Ziegler in )theorem )2.8(, ]2([, answered an essential question; where does the
broken circuit complex BC_(M , ) factored completely )definition )1.3 ((in general? To switched
our attention that we need a sutible linear order on the hyperplanes of a supersolvable arrangement
A to factor the broken circuit complex BC_(M , ) completely into a multiple join of discrete 0-

dimensional subcomplexes .They gave us an impression to express the hypersolvable ordering in
theorem )3.1 (as our choice of such linear order indeed it was drived from the supersolvable
structure.

Jambu and Papadima in ] )3-4 ([defined a vertical deformation {At}tec of a hypersolvable r -
arrangement A which is not supersolvable such that for each t  C \{0}, /it is supersolvable and
A has with Kt the same A, .For a supersolvable arrangement all the higher homotopy groups of
the complement are vanished and such arrangements are called K(z=7r(M(A)),1)
arrangements, where 7z,(M(A)) is the fundamental group of M(A) .Papadima and Suciu ]7[ used

the one parameter family {Xt}tec of Jambu and Papadima for a hypersolvable arrangement A

which is not supersolvable )fiber-type(, to show that the dimension of the first non vanishing
higher homotopy group is;

p(M(A)) = supfk | P(H"(M(A)), ) =ppq; P(H (M(A,)),5),¥j <k},
where P(H*(M(A)),s) and P(H*(M(Kl)),s) are the Poincaré polynomials of the

cohomological rings H*(M(/Xl)) and H*(M(Kl)) respectively. Ali in ]1 [showed a conjecture of
p(M(A)) in order to produce a connection between the dimension of the first non vanishing

higher homotopy group of a hypersolvable arrangement and the structure of it's no broken circuit
bases with respect the hypersolvable ordering ) see definition )3.3 .((The second purpose of this
paper is to produce a comparison between the structures of the broken circuit complexes of a
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hypersolvable arrangement A which is not supersolvable )i.e .with respect to any ordering < on
the hyperplanes of A, it's broken circuit complex can not be factored completely( and their

Jambu's-Papadima’s deformed fiber-type arrangements A,, teC\{0} .We found that p(M(A))

forms the rank of the last level in the intersection lattice that is invariant under Jambu's-Papadima’s
deformation .

The sections in this paper are devoted to serve our goal. Section one contains a brief
summary of the notions "matroid "and "the broken circuit complex "in oreder to introduce the
basic defintions that we need .In section two we review the hypersolvable partition and the
hypersolvable ordering of a hypersolvable arrangement .Where section three is devoted to ordered
the hyperplanes of a hypersolvable arrangement by the hypersolvable ordering in order to give the
broken circuit complex a geometric structure . For the supersolvable subclass of the hypersolvable
class we found that the broken circuit factored completely with respect to the hypersolvable
ordering )theorem )3.1 .(Where for the hypersolvable subclass of arrangement which are not
supersolvable, we study their broken circuit complexes in (theorem )3.5.))

1 . Matroids and the broken circuit complexes

Let A be a "finite "simplicial complex with vertex set A ={v,,...,v,} .We call the elements

of A the faces of A .If the maximal face of A has b elements, then we say dimA=96=b-1 .If
every maximal face of A has dimension ¢, then A is called pure .The f -vector of A is a vector

of integers f =(f,, f,,..., f5), where for 0<k <o, f, is defined to be the number of the faces of
A have k+1 elements .Notice that, f, =| A |=n .Define for a positive integers m,
5 m-1
H@Am)=>f| k
k=0

Also define H(A,0) =1 .Define the h-vector of integers h = (h,,...,h,) of A as follows :

e m_ (L+hx+---+hx?)
mz_;)H (A, m)x"™ = I .

The h -vector of A is determined by its f -vector.
Let K be a field and let A=K[x,,...,X,] be the polynomial ring over K whose variables are

the vertices of A .Let I, be the homogenous ideal of A generated by all squarefree monomials
Xy X, such that {Xilmxik} is non-faces of A, i.e.l, is generated by the "minimal "non-faces of

A We call the ring A, = A/l a standard K -algebra .As a graded algebra A, = Z:zoAg“, define

the Hilbert function H(A,,m) of A, by H(A,,m)=dim(Al) and the Krull dimension of A,
which is denoted by dim(A,) is one more than the maximal integer m such that H(A,,m) =0 _If;
0->M,->M,,»>--—>M,—>A —0,
is the minimal finite free resolution of A, then for 0<i<h we define the j"-Betti number
of A, tobe B (A,)=, =rk(M,) .The integer h which represent the largest integer i such that
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S, #0 is called the homological dimension of A, denoted by hd, .If hd, =n-dim(A,), we
call A, a Cohen-Macaulay ring and ,BhdA is called the type of A, .We refer to 18 [and ]10 [for
A

more details.

Definition 1.1 A" finite "matroid is a pair M =(A,A), where A is a finite set and A is a
collection of subsets of A , satisfying the following axioms

1 .A is a nonempty simplicial complex,i.e . A= andif A €A and A cA,then A" € A.

2 .Every induced subcomplex of A is pure, i.e .if B< A, the maximal elements of A(12"
have the same cardinality, where 2° ={Xc A | Xc B} .

The elements of A are called independent sets and we write ve M to mean ve A .We call
A a G -complex .

Two matroids M, =(A,,A,) and M, =(A,,A,) are isomorphic if there exists a bijection
w A, > A, suchthat {v,,...,v, } € A, if, and only if, {y(V),...w(v)}<A,.

A circuit X< A is a minimal dependent set, i.e.X is not independent but becomes
independent when we remove any point from it .If B < A, we define the rank of B by;

rk(B) = max{| B'|| B' < B and B'e A}.

In particular, rk(<) =0 .We define the rank of matroid M itself by rk(M)=rk(A) .A
maximal subset B < A of rank k is said to be a k -flat of M .Observe that if B and B' are flats
of M , then so is BNB' .We can define the closure B a subset B A to be the smallest flat

containing B, i.e .ﬁzﬂflatstBB' .Define the L(M ) to be the poset of flats of M ordered by
inclusions .Since L(M ) has a top element A , then L(M ) is a lattice called the lattice of flats of

M .Notice that, L(M) has a unique minimal element is 0= We define the characteristic
polynomial y,,(t) of M , by;

2 = 20 0, X)),

XeL(M)
where r=rk(M) and x is the Mébius function of L(M ) and | «(0, X)| is represent the
length of the maximal chain from minimal flat 0 into X of L(M) .Since A is a G-

complex, then for 0<k <rk(M);
B(AY=B.= X |u0X)].

fIatsXeLk M)

The A, is a Cohen-Macaulay ring and the Hilbert function H(A,,m)=H(A,m) with
homological dimension hdAA =rk(M) and of type B, (A,) -

Definition 1.2 A broken circuit of a matroid M with respect to an ordering < of A, is a set

X= X\v, where X is a circuit and v is the minimal element of X via < .The broken circuit
complex )or BC-complex (denoted by BC_(M ) is defined to be;

BC.(M) ={B < A | B contains no broken circuit}.
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For 0<k <o, set;

BCSk (M) ={B < A | B contains no broken circuit and | B |= k +1}.

Notice that, Rota in ]8 [gave another representation of | (0, X)| as the number of all the
maximal no broken circuits of M , contained in the flat X .Thatis, if f*=(f, f*,..., ;") isthe
f -vector of BC_(M ), then f* = BC5(M ) |= 3.,(A,) and;

T (€)= T3 = F0U 4 ()" 12,

where r=rk(M) and f} =1 Notice that, h =S, (A)= fiiu)s is the type of the

Cohen-Macaulay ring A, .

Definition 1.3 ]2 [Let A be a simplicial complex of dimension r —1 with finite vertex set A .We
say that A factors if A has a partition II=(IT,IT,)such that A=A *A,, where

A, :A|Hi ={S € A|S < I1,}is the restriction of A to IT,)i=12(, and the join of A, and A,is
A=A, ={S;US, |S, €A and S, e A,} .We say that A factors completely if A has a partition
I1=(I1,,...,IT,) into r nonempty sets, such that A is a multiple join of the induced subcomplexes
A=A *---xA_)as above(, where A, are discrete 0-dimensional, i.e . A, ={Z}U{{v}|v eI}, for
1<i<r.

Definition 1.4 )A hyperplanes arrangements and their broken circuit complexes(Let A be a
central r-arrangement of hyperplanes over C, i.e.A ={H,,...,H.}, where H, are linear

hyperplanes of C', [|_H,=@ and codim()|_H;) =r .Define the complement

M(A)=C' \Uin:lHi and L(A) to be the lattice intersections of the hyperplanes of A reverse by
inclusion, )i.e . X <Y <Y < X (and ranked by rk(X) =codim(X).
Define a matroid M , =(A,A), on A by letting A to be the collection of all independent
subarrangements of A .Notice that, L(A)=L(M) .Let
BC.(M) ={B < A | B contains no broken circuit},

be the BC-complex of M , .Then
I ©= o — M e (D) A,
where r=rk(A)=6+1 and f*=(f, f.., f;) be the f-vector of BC (M ,) and
f, =1 .Notice that, h = ﬁrk(MA)(AA) = {2, is the type of the Cohen-Macaulay ring A, and it has

a minimal free resolution,
0->M, ->M _,—>-->M;,>A -0,

where for 0<k <r, rk(M,) = f2,.

2. A hypersolvable partition of an arrangement
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Definition 2.1 16 [A partition I'T=(I1,,...,IT,) of A is said to be independent if the resulting ¢ -
hyperplanes H; eIT;, 1< j</ are independent.Call S :{Hil’“"Hik} a k-section of IT if for
each 1< j<k, Hij el‘Imj for some 1<m, <.--<m, </ .Notice that if IT is independent, then all
it's k -sections are independent .Let;

Si(A)={S c A |Sisak-section of IT}, for 1<k </,

and S, (A)= Ui:ls}‘l(A) .We call IT a factorization of A, if it is independent and for
each X €L, (A), the induced partition IT, = (IT,...,T1%) of A, ={H € A | X < H}, contains a
singleton block, where for 1< j <k, IT) =TI, NA, # ¢ forsome 1<m</ .

Definition 2.2] 1 [A partition IT=(I1,,...,IT,) of A is said to be hypersolvable with length
¢(A)=¢ and denoted by Hp, if |IT,|=1 and for fixed 2<j<¢, the block IT; satisfy the

following properties :
)j-closedness property of II; :(For H,,H, e T, U---UTI;, there isno H eIT,, U---UTI,

such that rk(H,,H,,H)=2 .

)j-completeness property of II; :(For H,,H, €IT;, there is H eTT,U---UTT,, such that
rk(H,,H,,H) =2 .From j-1-closeness property of IT,,, the hyperplane H must be unique we
denoted by H,, .

)i-solvability property of II; :(For H,,H,,H; eI1,, either H, ,,H, ;,H, , eI, U---UTT
are equal or rk(H, ,,H,,, H,,)=2.

For 1< j</, let d; =TI, | .The vector of integers d =(d,,..,d,) is called the d-
vector of T1 and we define the rank of the blocks of IT as rk(IT,) = rk(ﬂ H) .We call

HeHlU---UHJ-
IT; singular if rk(IT;)=rk(I1,,) and we call it non singular otherwise .We call a Hp II is
supersolvable if it is independent .Observe that rk(IT, ) <rk(IT1;) in general and if />3, then

every IT; ,IT, ,IT, <IT are independent .

Definition 2.3] 1[ A is said to be hypersolvable if it has a hypersolvable partition and we call it
supersolvable if it has a supersolvable partition .

Definition 2.4 Let A be a hypersolvable arrangement with Hp IT=(I1,,...,I1,) .For 1< j</,

partitioned IT; into two blocks as; put IT,, :{Hil,...,Hik}g IT; such that rk(Hil,..., Hik) =2 and
IT,,, =I1;\IT,, .Define the induced hypersolvable ordering < of A as :
1 If Hell, and H'eIl; such that i< j, put HaH' .If H IT; and H'eIl; such

that i< j,put H<H' .
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2 For 2<j</, give the hyperplanes of IT;,
H,,H,,H; eIT; with rk(H;,H,,H;)=3, put H; <H, <H, if, and only if, H,
where {H, ,H; ,H; }={H,,H,,H.}.

Notice that the induced hypersolvable ordering need not be unique of A , since our choice
need not be unique.

an arbitrary ordering such that if
, SH; i, <H

i i iz = |2,i3 ’

of IT.

i*l

Definition 2.5] 6 [A r-arrangement A is said to be ¢ -generic) ¢ > r (, if every subarrangement
B < A with | B |=r is linearly independent .

Observe that, the ¢-generic r-arrangement A is a hypersolvable arrangement has Hp T1
with exponent vector d = (1,..1), but the converse need not to be true in general and 15 [included a

counterexample.

3 The BC-complex of a hypersolvable arrangement and The hypersolvable
partition

From now on we concern the assumpption : A is a hypersolvable r -arrangement with Hp
IT=(I1,..,IT,) and d-vector d=(d,,..d,), where BC,(M ,) be the BC-complex of the

matroid M , via a hypersolvable ordering with f -vector f* =(f;', f,..., f;') . That is, we shall
give the no broken circut subarrangements the degree lexicographic )DeglLex (order with respect
the hypersolvable ordering. Let BCﬂ(MA)L ={SeBC_(M,)|ScII} be the restriction of

BC.(M ,) to IT;, for 1<i</ .

Definition 3.1 Recall definition )2.1 .(Let; S¥(A) ={S < A | Sisak -section of IT}, for 1<k </,
be a discrete 0-dimensional simplicial subcomplex of BC_ (M ,), for 1<i</ .Let
SH(A)=SH(A)|1*~~*SH(A)|Z be a multiple join of the indiuced subcomplexes
Sp(A),»--»Sy(A)],)as in definition )3.2((, i.e. SH(A):Ui:lSI'_‘[(A). We call S;(A), a
hypersolvable partition complex of the matroid M , via a hypersolvable ordering .In general,

S;;(A) need not be a subcomplex of the G -complex A of the matroid M , .

Lemma 3.1 For 1<i</, BCS(MA)L =S,(A)].-

Proof: It is known that, "In a hypersolvable arrangement A every k-NBC base of A
forms a k-section of IT, 1<k <r", )proposition )3.1.22(, ]J1([ and "S c A is a 2-NBC base of
Aif, and only if, S is a 2-section of TII", )theorem )3.2.1(, ]1.([Thus

BC.(M A)‘n. ={SeBC .M ,)|S cI;}={C}YU{{H}| H eI1;} are discrete 0-dimensional which
completes the proof .

Bj 6 rner and Ziegler in )theorem )2.8(, 12([, answered an essential question; Is the broken
circuit complex BC_(M ,) factored completely in general? To switched our attention that the

existence of a sutible linear order on the hyperplanes of a supersolvable arrangement A which

157



J. Thi-Qar Sci. Vol.2 (3 Spt./2010

respects the supersolvable structure forms a necessary and sufficient condition on the broken
circuit complex BC_(M ,) to factor completely and they gave us an impression to illustrate the

hypersolvable ordering by the following theorem as our choice of the linear ordering satisfied
theorem )2.8 (in ]2[, indeed it was drived from the supersolvable structure.

Theorem 3.1 A is supersolvable if, and only if ; BC_(M ,) = S,(A) ,i.e .BC_(M ,) factors
completely into BC_(M ,)=BC,(M )| *---*BC,(M )| via the hypersolvable order.

/—k+1 l
Therefore, for 1<k <s+1=r=/; fl=2 0 D, didy

=1 if =g+

i.e .the f -vector of BC_(M ,) is completely determined by the d -vector of A .Notice
that, h, = f* =d,..d, is the type of the Cohen-Macaulay ring A, and it has a minimal free
resolution, 0 >M, > M, , —>---—> M, - A, —0,where for 0<k <r, rk(M,) =2, .

Proof .By )theorem )3.2.6(, ]1 ([," A hypersolvable r-arrangement A is supersolvable if,
and only if, every k-section of TT forms a k-NBC-base of A via the hypersolvable order,

1<k<r", Thus,BC,(M ,)=S;(A).and BC , (M A)‘n. ={ZYU{{H}|H eI1.} is discrete O0-
dimensional, for 1<i<r .That isBC (M ,)=BC (M A)‘n *..-x BC_(M A)‘H is completely
factored .From definition )1.2(, for 1<k <d+1=r=/;

(—k+1

/
£ =[BCAM ) FF >+ D" d,...d, and,

=l i =i g
f* =d,..d, .In fact we compute the k™ -Betti number of A, which is enough to construct
the minimal finite free resolution of A, which is a Cohen-Macaulay ring with type P, = f2
A

The important point to note here is that S (A) is a simplicial subcomplex of A if, and only

if, A is supersolvable .That caused by these sections of TT which is not independent in case of A
IS non- supersolvable .

Example 3.1 Let A be a supersolvable 4 -arrangement with defining polynomial,

QA) =z(y—x+2)(y+X+2)(Y+3z+W)(Yy+2Z+W) (Y +W)(Yy —Z+W).

We give the hyperplanes of A , the hypersolvable ordering as follows;

H, = ker(z), H, = ker(y—x+12), H, =ker(y+x+1z), H, =ker(y+3z+w),
H, =ker(y+2z+w), H,=ker(y+w) and H,=ker(y—z+w),with respect the HP
1= (I1,IL,11,,11,) = ({H,}.{H,}.{H:}.{H,, H., H,,H.}) which has a d -vector, d =(1,1,1,4) .For
simplicity we write i instead of H,, for each 1<i<7 .The matroid M , = (A,A), is defined on

A by letting A=| [ A, where; A, ={1,...,7}, A ={{, }1<i< <7},

k=0
A, ={{i, jK}H1<i< j<k<THI\{{1,i, j}4<i< j<T} and
A, ={{i, j Kk, pHI<i< j<k<p<7THI{i jk p}l<i<3and4< j<k< p<7}.
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That is the f -vector of A is f =(7,21,25,10) and by simple calculations H(A,0) =1,
H(ALD=7, H(A2)=28, H(A3)=74, H(A4)=155,..and the h-vector of A is
h=(1,3,6,1,0) since;

_(143x+6x2+x%)
)

STH (A, m)X"

By applying theorem )4.1(, "~

BC.(M ) =Sy (A);

and the f-vector of BC_(M,) with respect the hypersolvable ordering is
f* =(7,15,13,4) which is completely determined from the d -vector of IT.

Let K be a field and let A= K[H,,...,H,] be the polynomial ring over K whose variables
are the vertices of A .Let |, be the homogenous ideal of A generated by the "minimal "non-faces
of A .The standard K -algebra A, = Z:ZOAE‘, of A, as a graded algebra is determined by the
Hilbert function of A, as H(A,,m)=dim(A{) =H(A,m) and the minimal finite free resolution of
A;

0O->M,->M;>M,>M, ->M, > A —0,

is completely determined by f*, since the Betti numbers of A, are f,(A,)=1,
Li(A)=T7, B,(A)=15, B,(A,)=13 and p,(A,)=4 .The homological dimension of A, is
hd, =4 and the Krull dimension of A, is dim(A,)=7-hd, =3 Therefore, A, is a Cohen-

Macaulay of type ﬂhdA =4 .
A

Definition 3.2 :Given two r -arrangements A, ={H;,...,H} and A, ={H/,...,H’} .

1 .We will say A; and A, have the same lattice or L-equivalent and denoted by
L(A,))=L(A,), if for eah 1<i<--<i<n and 1<k<n we have
rk(Hill,...,Hilk):rk(Hii,...,Hii) .

2 For 2<k<r-1, set A(A;)={B,cA,|B |<k+1} to be the lattice intersection
pattern up to codimension k of A, and i=1,2 .We say A, and A, are A,-equivalent and
denoted by A,(A;)~A(A,) if for each 1<i <.--<i;<n and 3<j<k+1, we have
rk(Hill,...,H}J): rk(Hii,...,Hii) :

3 .let P(A,,t) be the Poincaré polynomial of L(A;) and i=1,2 .A, and A, is said to be
P -equivalent if B(A,,t) =R, (A,,t) .

Notice that, if A, and A, are L-equivalent, then they are A, -equivalent for 2<k <r-1

and they are P -equivalent .But the converse need not to be true in general. The following theorem
of Ali, classified the hypersolvable class into a supersolvable subclass and the non supersolvable

subclass by the minimal information that encoded in A, :
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Theorem 3.2 11 let A, and A, be supersolvable r -arrangements . A, and A, are L -equivalent
if and only if they are A, -equivalent .

Theorem 3.3 If the supersolvable arrangements A, and A, are A,-equivalent, then they have
isomorphic matroids, i.e.MAI:(Al,Al);MA2 =(A,,A,) .That is, they have isomorphic

partition complexes, i.e .BC_(M Al) =BC_ (M A2) via the hypersolvable ordering which give rise

into isomorphic standard K -algebras A = AA2 .

Proof. As a direct application of Ali's theorem )5.2(, A, and A, are L-equivalent.That
is, there exists a one to one correspondence @:A, —>A, satisfies for 1<k < A|,
rk(Hill,...,Hilk):c if, and only if, rk((p(Hill),...,(p(Hilk)):c Thus, A, and A, have equivalent

independent subarrangements .In particular, we define the isomorphism @:A, — A, between the
G -complexes of A, and A, .Therefore, the maroids M AT (A,,A) and M A, = (A,,A,) are
isomorphic.

On the other hand the one to one correspondence ¢@:A, — A, which respects the HP
analogue I1, on A, define an equivalent HP I1, = @(I1,) on A, .In fact, ¢ define equivalent
hypersolvable orders on the hyperplanes of A, and A, which produce an isomorphism between
the partition complexes ¢:BC_(M Al) =BC_ (M A2) via the hypersolvable ordering, since A,

and A, have equivalent sets of sections .It's clear that the G -complexes of A, and A, have the
same f -vectors and they have the same Hilbert functions which define an isomorphism between

the graded K -algebras AAtl and AAt .Where the equality f% = £°2 define K -isomorphism
2

between the free resolutions of A, and A, since they have the same Betti numbers

In order to show that the fundamental group 7z,(M(A)) of the complement M(A) has a

fashion of an iterated almost direct product of free groups, Jambu and papadima defined a vertical
deformation of a hypersolvable arrangement which is not fiber-type arrangement as follows:

Theorem 3.4) :Jambu's-Papadima’s deformation Theorem /2,3 (/ Let A be a hypersolvable r -
arrangement such that r</, i.e.A is not supersolvable .Then there is a vertical deformation

{,;it}tec of A in C"xC*=C", where s=/—r such that foreach teC, A, is supersolvable with
A and Kt are A,-equivalent.

Papadima and Suciu in ]13[, used Jambu's-Papadima's deformation {;xt}tec of a

hypersolvable arrangement A which is not supersolvable )not K(z,1)(, to show that the
dimension of the first non vanishing higher homotopy group is;
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p(M(A)) = sup{k | P(H"(M(A)), ) =oq; P(H*(M(A,)),5).¥j <k},
where P(H*(M(A)),s) and P(H*(M(Kl)),s) are the Poincaré polynomials of the

cohomological rings H*(M(Kl)) and H*(M(Kl)) respectively. Ali in ]1 [showed a conjecture of
p(M(A)) to produce a connection between the dimension of the first non vanishing higher

homotopy group of a hypersolvable arrangement and the structure of it's lattice intersection with
respect the hypersolvable ordering and the following definition represent her that :

Definition 3.3:Let A be a hypersolvable r-arrangement with Hp IT=(I1,,...,I1,) such that
r</(,ie.A isnotsupersolvable .Define p(A)=max{k | BCX(M ,) =S/ (A)}.

Our purpose In this paper is to introduced a comparison between the structures of the
broken circuit complexes of a hypersolvable arrangement and their Jambu's-Papadima'’s deformed
fiber-type arrangements .

The principal significance of the next lemma is introducing the level L , . (A) as the first
level in the intersection lattice L(A) that contains a flat X eL,,,,(A), such that the

subarrangement A, ={H € A]| Xc H}c A contains dependent sections among (p(A)+2)-
different blocks of IT via a hypersolvable order:

Lemma 3.2 Suppose we have the conclusions of definition J)3.3.(Then there exists
S'eS)™*2(A) and S’ isa (p(A)+2) -circuit.

Proof :If SeSi™*"(A) such that S¢BC!™*™(M ,), deduce that S must be a
(p(A) +1) -broken circuit .Let H € A be the minimal hyperplane of S via the hypersolvable
ordering such that S"'=SU{H} forms a (p(A)+2)-circuit.Let m=min{k | SNII, =} .It is
clear if "¢ SP*?(A), then H eI1,, .That applys the completeness property of IT, and produces
a contradaction with our choice of H .Therefore, S' e S2*)*?(A)

The following result is the main result of our paper which produces a comparison between
the broken circuit complex of a hypersolvable arrangement which is not supersolvable and the
broken circuit complexes of their deformed supersolvable arrangements:

Theorem 3.5 Let A be a hypersolvable r -arrangement with Hp I1=(I1,,...,I1,), d-
vector d =(d,,...,d,), f -vector f =(f,,f,..., ;) of A and f vector, f* =(f}, ..., ) of
BC,(M ,) suchthat r </ .Then:

K—1 k - - (—k+1 4
1 .For 2<k<r, BCI*(M ,)c S (A) ingeneral,ie. f} <> ---Z“ik:ikfldil...dik .

=1
_ . N
2 .BCY(M,)=Si(A) ie. £ =3, 3" did,.
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3 .There exists 2<p<r-1 such that BC{*(M ,)=Sf(A), for each and L, (A)

represent the first level in the lattice intersection L(A)that contains dependent relations among
p+2-blocks of IT .That is, for 2<k < p,

A _ /—k+1 /
fi = Zi1:1 “.Zik:ik,lﬂdil .. .dik )
4 For all t,t,eC\{0}, Aa and Atz are L -equivalent and they have isomorphic

matroids M&l :(‘Z‘H’Zﬁ) and M5t2 :(Atz,ltz) .That is, they have isomorphic partition

complexes, i.e.BC_(M ; )=BC_(M ; ) via the hypersolvable ordering which give rise into
- b - )
isomorphic standard K -algebras A . =A, -
2

5 .Forall teC\{0}, A and th are A, -equivalent, where

p=p(A)=max{k|BCI*(M ,)=S;(A)}.

Thus Jambu's-Papadima’s deformation preserves the lattice intersection pattern up to
codimension p, then for p(A)+1<k<r, the deformation destroyed all the flats X €L, (A)
that A, contains dependent sections distrbuted among j -different blocks of IT, j>k+1, which

adds new faces of BC_(M ,) to deform it into the partition complex Sﬁt (Kt) as follows
. For 1<k<p, A and BC{'(M,) is

invariant under the deformation .Thatis A, , =A} , and BC{™'(M ) = Sl'é[t (A)).

ii. For p+1<k<r, Jambu's-Papadima's
deformation replaced BCX™*(M ,) by Sk (A,) by adding exactly
- t

/—k+1 4

> > d..d -

W= =i g

(k—1) -faces .
iii. For r+1<k</, Jambu's-Papadima's

deformation adding
(—k+1

4
oo S d,d,
4 . 4 1 k

=1 i =g+l _

(k —1) -faces to obtain Sgt (A) .

That is, the G-complex and BC-complex of A embedded in the G-complex and partition
complex of A, respectively .Thus, for 0<k < p+1, Af = ADk andfor 0<k<p, M, =M, .

At

6 .If r=3,then p=2 and;
BC:(M ,)={BcA|B[]I,#Jand|B|= 3},
where;
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-1 4
=3 Ydd,.

i1:2 i2:il+l
Jambu's-Papadima's deformation keeps A,, BC;)(M A), A and BCé(M A ) unchanged
and deform BC?(M , ) into SH (Kt) by adding exactly;
- t

(=2 (-1

l
> > ddd,

i1=2 i2=il+1 i3=i2+l
2 -faces .Then, for 4<k </, Jambu's-Papadima’s deformation destroys all the dependent

k sections of A and replaced it by;
(—k+1

0
S Y d,d,,

T

(k —1) faces to obtain Sl':‘[t(gt) That is for 0<k<3, A‘=A* and for 0<k<2,

At
M, = M, where there is a monomorphism M.° M. .
7 .If A is 7 -generic, then p=r-1 and;
BC,*'(M ,)={BcA|B[ ), and|B|=r},

where frlz(r L

]. Jambu's-Papadima's deformation letting A, , =BCi™*(M ,)

invariant for 1<k <r-1 and added exactly (
r

J, r—1-faces to deform BC."(M ,) into

~ l
Sri[t (A,) .Then for r+1<k </, the deformation added (k) k —1-faces to deform BC (M ,) into

S, .That is for O<k<r, Af=A‘ and for 0<k<r-1, M,=M, where there is a
t At

monomorphism M ° M; .

Proof -
For 1 :From] 1], it was proved that "If A is a hypersolvable r-arrangement, then for
1<k <r, the k-no broken circuits of A must be distributed among k -different blocks", i.e .every

k -no broken circuit of A is a k -section of IT .That is the number of all (k—1)" faces of A can

not exceed the number of all k -sections of IT and our aim is hold .
For 2 :Every 2-broken circuit is a 2-section.On the other hand, if

B={H, . H }e SZ(A) such that for j=1,2, Hij ell, and 1<, <i, </, then from i,-closeness
a2 N
property of IT, , B e BC.(M ,) .Therefore, BC:(M ,)=S/(A) and f* = Zilzlzizzil+ldildi2'

For 3 : By using Jambu's-Papadima’s vertical deformation method, Ali in ]1 [showed that
"for a hypersolvable r -arrangement which is not supersolvable, there exists 2 < p <r—1 such that

for each 1<k < p, every k -section of IT forms a k -no broken circuit of A ", i.e. for 1<k <p,
BCi'(M ,)=Sg(A) and;
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£2 = Zflzkfl' . 'Ziék=ik_l+ld‘1"'dik .

For 4 :For all teC\{0}, Jambu's-Papadima’s vertical deformation method deformed the
hypersolvable r-arrangement A into X,t which is a supersolvable r-arrangement with A and
Kt are A,-equivalent .That is for t;,t, eC\{0}, ‘Z‘& and Atz are A, -equivalent and by
applying theorem )3.2 (and theorem )3.3(, they are L -equivalent, they have isomorphic
matroids, i.e .M;\t1 = (AH’Z&);M&tZ = (Ktz,th) and isomorphic partition complexes, i.e.

BC.(M gtl) =BC.(M i, ) via equivalent hypersolvable orders which give rise into isomorphic
2

standard K -algebras A ; =A, -
2
For _5: From )3.5.4 (above, the integer p is defined to be
p=p(A)=max{k | BC*(M ,) =S5 (A)} .Ali used this definition in ]1 [to showed that "for all
teC\{0}, A and Kt are A ,-equivalent ."Ali studied Jambu's-Papadima’s vertical deformation

{/Kt}tec of A Dby using the hypersolvable partition analogue and found that the deformation
method destroys all the flats X el (A), 2<k<rsuch that the subarrangement

A, ={H e Al| XcH}c A contains dependent sections .Ali found a connection among the
integer p, the hypersolvable partition and lattice intersection as; "the level (p+1) in the lattice
intersection L(A) of A contains the first dependent relation among different blocks", i.e .there is
a (p-+2)-dependent section of IT .Therefore, every (p-+1)-blocks of the Hp IT are independent .
Then, "the deformation destroys all dependent relations of rank greater than or equal to (p+1)
among the blocks by destroying all the flats X el (A), P(A)<k<r such that the

subarrangement A, ={H € A/|XcH}c A contains dependent sections." That is the

deformation method keeps all those sections of IT which are no broken circuits invariant, where
those sections of IT which are not no broken circuits of A replaced by sections which are no
broken circuits of A, .In fact, the one to one correspondence ¢:A — A, which respects the

lattice intersection pattern up to codimension two, (p:Az(A)%AZKt, define a one to one
correspondence gp:l‘[%ﬁt with respect the same hypersolvable ordering of A and Xt, i.e.p
gives each one of A and Kt the same d -vector .(Therefore,

go:sn(A);sﬁt(At) ...... )3.1(

forms a one to one correspondence, where it's restriction on BC_, (M ,),
Pec_ ) :BC.(M ,) 1>¢(BCS(M A))° Sﬁt (Kt) define an injection between the broken circuits
complexes .That is, the deformation start with embedding BC_(M ,) as a subcomplex of

S (Kt), since all the no broken circuits of A are invariant under the deformation, then we can
t

construct the broken circuit complex S- (Kt) of At by using the deformation method as follows :
t
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For)3.i :(For 1<k < p, the equivalent lattice intersection pattern up to codimension p of
A and A, give rise into a bijection Doy Dy = Myeyy OF (k—1)" -faces of the G -complexes
since A and A, have the same independent relations of rank k and the restriction of ¢, ,, on

BC{ V(M ) is a bijection @ )« ,:BCS (M) =>S;(A) of broken circuit complexes

which keep BCSk (M ) invariant under the deformation .Then, we added new faces to transform
BC.(M ,) into Sﬁt (Xt) and we can classified those added faces into two parts .

For )3.ii :(The first one is those faces which are the minimal nonfaces of BC (M ,) of
dimension (k-1), p+1<k<r which we add them by the restriction of )5.1(on
S (A)\BC,(M ,),

Pegianscy ) Su(A)\BCLM ) S 0(Sy(A)\BC(M ) S5 (A),

i.e .we add exactly | S, (A)|-|BC_ (M ,)[, (k—1)-faces .
For )3.iii :(The second part contains all those faces of dimension (k-1), r+1<k</,
which we add them by the relation) 3.1( above, ¢ ;,: S (A) 1>SIE[t (A,), where the number of

such faces is equal to | SK(A)] .
Finally, for each 0<k<p, A and Kt have the same f,, f* and H(A k+1) which is
produced that for 0<k < p+1, Al = A* and for 0<k < p, M, =M, as free A-modules .

At
For 6 :If r =3, then each 3-section B of IT which not contains H, €Il is not 3-no

broken circuit of A , since {H,}UB is a 3-circuit .Thus, p =2 and by applying )3.5.5 (above our
aimis hold .

For 7 : If A is /-generic r-arrangement, then for each 1<k <r -1, every k -section B
of IT is a k-no broken circuit of A since for each H € A, the subarrangement {H}UB is
independent .Where every (r)-section X of IT which not contains H, €I, is not r-no broken
circuit of A, since {H,}UX is a r-circuit . Thus, p=r—1 and by applying )3.5.5 (above, our
claimistrue . o

Example 3.2 :Let A be a  hypersolvable 3-arrangement  defined by;
Q(A) =z(y—x+2)(y+x+2z2)(y+3z)(y+22)y(y—2z). From the following cofigration of 7 points

in the dual projective space CP*";

1 4 5 6 7
2 3
L ] L ]

with the following hypersolvable ordering on A ; H, =ker(z), H,=ker(y—x+2),
H, =ker(y+x+z), H, =ker(y+3z), H, =ker(y+2z), H, =ker(y) and H, =ker(y—z), the
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HP of A be IT=(I1,I1,,I1,,I1,) = {H}.{H,}.{H.}.{H,,H:;, Hs,H,}) which hasa d -vector,
d=(1,1,1,4) .The matroid M , = (A,A), is defined on A by letting A = Ui:OAk , Where;

Ay ={1,...7} A ={{1, [}1<i< j<T} and
A, ={{0, ,kK}H1<i< j<k<TH{{L,i, j}4<i<|<T}

That is the f-vector of A is f =(7,21,25) and by simple calculations H(A,0) =1,
H(A1) =7, H(A2) =28, H(A,3) =74, H(A,4) =145 ...and the h-vector of A is h=(1,4,10,8)
since;

© 2 3
ZH (A m)x" = (1+4x+10x3+8x )
~ (1-x)
In fact A is not supersolvable and from theorem )3.1(,
BC.(M ,) #S(A).
By applying theorem )3.5(, the broken circuit complex BC_(M ,) of A, is defined as;

BC.M )= UizoBCE (M ), where;

BC§(MA) ={1,...,7%}, BCé(MA) ={{i, }1<i< j<TI\{{, j}4<i< j<T} and
BCﬁ(M ) ={L LK 2< <k <TIV{{L, )k} 4<j<k<T}.

That is the f-vector of BC (M ,) is f*=(7,159)and figure )3.2.1 (includes a
realization of BC_(M ,). 7

123, 125, 135 123, 126, 1306

£

123, 127, 137

123, 124, 134

Figure(3.2.1)

Let K be a field and let A=K[H,,...,H,] be the polynomial ring over K whose
variables are the vertices of A .Let |, be the homogenous ideal of A generated by the
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"minimal "non-faces of A .The standard K-algebra A, =%~ AT, of A, as a graded
algebra is determined by the Hilbert function of A, as H(A,,m)=dim(A) =H(A,m) and
the minimal finite free resolution of A;; 0>M, >M, > M, > M, > A, -0,

is completely determined by f*, since the Betti numbers of A, are f,(A,)=1,
B(A)=T, B,(A) =15 and B,(A,) =9 .The homological dimension of A, is hd, =3 and
the Krull dimension of A, is dim(A,) = 7-hd, =4 .Therefore, A, is a Cohen-Macaulay of
type fh, =9

By applying an algorithm given by Ali in ]1[, the supersolvable Jambu's-Papadima's
vertical ~ deformation {Kt}tec of A in C®xC=C* is defined as
Q(At) =z2(y—X+2)(y+ X+ 2)(y + 3z +tw)(y + 2z +tw)(y + tw)(y — z + tw), for each t e C and by
the same hypersolvable ordering of A let; H;=ker(z), H,=ker(y—x+2),
H:=ker(y+x+z), H,=ker(y+3z+tw), H;=ker(y+2z+tw), H;=ker(y+tw) and
H} =ker(y—z+w), where the HP TI, = ({H,},{H;}.{H;}.{H;,H;,H;,H:}) of A, have the
same exponent vector with A .From Theorem )3.5.6(, p=2 and Jambu's-Papadima's
deformation keeps BCJ(M,), BC.(M,) unchanged, ie .BCI(M a) =L T
BC.(M At):{{i‘,j‘}|1si< i<THI{{', j'}4<i<j<7} .Then we deform BCZ(M,) into
Sgt (A,) by adding exactly four 2-faces, {2',3'4'}, {2',3',5'F, {2,3',6'} and {2',3',7'}, as
shown in figure(3.2.2) .

133, 124, 134,204 123, 125, 135, 238 123, 129, 138, 236

Figure(3.2.2)
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Finally, Jambu's-Papadima’s deformation destroys all the dependent 4 -sections of A and
replaced it by four 3-faces, {1',2',3',4'}, {1',2',3',5'}, {1',2",3',6'} and {1',2',3',7'} to obtain
st (A,), as in figure(3.2.3) .

1237

Figure(3.2.3)

Observe that if t =1, the supersolvable 4 -arrangement that given in example )3.1 (.forms the
1% -deformed arrangement A, of A and from )3.5.4(, for all teC\{0}, A, and A, have the

same lattice .That is we need only to compare A with }11 .Observe that, A and }:1 have;

1 .the same lattice intersection pattern up to codimension two,
2 .the same HP,
3 .the same d -vector,

4 foreach 0<k<2, f*=f" and f* = £ and
5 .foreach 0<k <3, H(AK)=H(A,, k) .

By applying theorem )3.5.6(, we have the following commutative diagram of free A -
modules :

M, —>M, M, sM,—»A, 0
VN J VN

|\/|§—>|\/|§—>|\/|1t—>|\/|$—>Ar —0;
At

where for 0<k <2, M, =M, where there is a monomorphism M.° M; which is defined a

monomorphism A,° A

At
Remark 3.1 For a hypersolvable arrangement A , the quantities ¢(A), the d-vector component
"may in different order", the number of the resulting no broken circuits of A and the sections of
the HP IT are independent of our choice of the hypersolvable partition IT and the order we used of
the hyperplanes of A that caused by the geometric structure of the lattice intersection of A .The
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definition of Jambu's-Papadima’s vertical deformation seems to be dependent of our choice of the
related hypersolvable partition which needs not to be unique .But in the lattice intersection these
deformed properties are dependent of the vertical deformation method that we used to deform A
into a vertical family of supersolvable arrangements .
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