

105

J.Thi-Qar Sci. Vol.2 (1) Jan./2010

 ISSN 1991- 8690 1661 - 0968 الترقيم الدولي

CODE DENSITY OPTOMIZATION AND IMPLEMENTATION

USING LZW APPROACH BASED ON 32-BIT RISC PROCESSOR

Abdullah A. Hussain Hussein A. Kh. Al-Eidane

Basrah University - College of Education - Computer Science Dept.

ABSTRACT

 Considering the worldwide used of mobile to connect internet, and code compression

technology that played significant role in saving space and power. Our study is focusing on

how many items will be stored in the dictionary and how many bits long for every item,

which will determine the optimum dictionary size to the compression process .

 Focusing on the dictionary size, one can gain the key for improving the compression

ratio on interesting Benchmark. The results will hold on variant size of Benchmarks to

investigate the proper dictionary size for variant cases. The average result of compression

ratio was 62.34% for a dictionary with 9 bits code and 256 items, where the maximum value

of compression ratio was 72.89%.

If we use another dictionary with more than 10 bits, the compression ratio will vary a little.

KEYWORD: Mobile communication, Code Density, Compression Technology, Dictionary

Optimization, Decompression unit, hardware implementation.

aa
Typewritten text
website: http://jsci.utq.edu.iq Email: utjsci@utq.edu.iq

106

J.Thi-Qar Sci. Vol.2 (1) Jan./2010

Introduction:
 Compression technology is bursting to the surface impressively, because of worldwide

usage for mobile technology in internet connection. On other hand, embedded systems are

occupying important market area as well. The common parameter between the two issues, that

is, the critical necessity of optimum utilizing for resources in terms of size area, weight, and

power. In general, these systems use the RISC general-purpose processor. The low-density of

processor instruction and the compression technology are playing contradictory roles.

Code compression is a key technique used for increasing the code density, which leads the

reduction of memory size, bus, and power. Moreover, saving memory area helps the designers

to offer more functions or tasks especially costumers which requesting for further services in

their devices.

This paper, suggest an idea is to store the execution program in a compressed format, that is a

compacted offline, and then retrieved to its original format for processor demand. The

decompressed procedure implemented by a Decompressor hardware, which installed between

cache memory and the untouched 32-Bit processor. The performance degradation of the system

accepted in case of no exceeding system tolerance .

Designing the Decompressor engine with the chosen algorithm, that is, lossless LZW algorithm

should develop the compression ratio on the system, reducing power, and upholding processor

real-time. This lossless LZW algorithm is choose [1] among many algorithms [2,3,4] because

of its simplicity; high-speed in compressing, and decompressing that support our investigate

and implementation goal. The investigation concentrates on the proper dictionary size with

different size Benchmark to improve compression ratio on the system, which illustrated in

Equation 1 below.

Compressed size + Dictionary size

Compression ratio = (1)
Original size

Related Works:
 In 1992, Wolf and Chanian

 [5]
developed the compressed code RISC processor using the

Huffman encoding as method and a cache Decompressor memory approach. They have

achieved compression ratio 73% with ignoring effected in performance.

 Game and Booker 1998 [6], they have used similar technique and algorithm for previous

study with the PowerPC processor instruction, which instructions are compressed in 64-byte

blocks. The blocks decompressed when loaded to the cache memory. There are two look-up

tables; each of these has the size of two Kbytes, which used for holding token expansions.

These tables used for the two parts of the instruction; first is for high 16 bits and the second

one for the lower 16 bits. They achieved a compression ratio between 0.60 and 0.65.

 Lekatsas et al 2001[8], they have used a dictionary-based method with Decompressor

engine for decompressing one instruction per cycle utilizing processor name Xtensa 1040, he

reported an average 25% speed-up and 65% compression ratio.

 Lekatsas et al 2002, [7] they have classified instructions into for types; instructions with

immediate, branches, fast dictionary, and uncompressed each of which required a particular

compression method.

 Benini et al.2002, [10] has applied a dictionary-based method in the DLX processor to build

the dictionary from the most frequently executed instructions, their results showed an average

of 72% compression ratio and 28% speed-up.

107

J.Thi-Qar Sci. Vol.2 (1) Jan./2010

 Nikolova et al. 2003 [9], presented a code compression scheme for improving SoC

performance. They have designed a hardware Decompressor based on dictionary technology

with studied case of changing flow. The compression ratio that achieved is among 57% .

 Das et al. 2005 [11] applied a code compression on variable length instruction set

processors whose encodings are already optimized to a certain extent with respect to their

usages. They developed a dictionary-based algorithm that utilizes unused encoding space of an

instruction set architecture to encode code-words, and addresses issues arising out of variable

length instructions. Their compression achieved by the machine shows a (10-30)%

compression for the various benchmarks.

 Yuan Xie et al 2006, [12] present a class of code compression techniques called variable-to-

fixed code compression (V2FCC), which uses variable-to-fixed coding schemes based on

either Tunstall coding or arithmetic coding. These techniques are suitable for both reduced

instruction set computer (RISC) and very long instruction word (VLIW) architectures. They

favor VLIW architectures that require a high-bandwidth instruction pre-fetch mechanism to

supply multiple operations per cycle, and fast decompression, which is critical to overcome the

communication bottleneck between memory and CPU. Their experimental results for a VLIW

embedded processor TMS320C6x show that the compression ratios using memory-less V2FCC

and Markov V2FCC are around 82.5% and 70%, respectively. Decompression unit designs for

memory-less V2FCC and Markov V2FCC implemented in TSMC 0.25- m technology.

Choosing the compression algorithm to design hardware Decompressor demands improved

compression on the instruction size with small amount of dictionary size as shown in Equation

1. The goal of this research is to achieve a Decompressor design and addressing the required

dictionary size for improving compression ratio using the Lossless LZW algorithm. The proper

dictionary size with variant size of Benchmark will show how to control extending of the

dictionary and the effectiveness of dictionary size on achieving compression ratio in terms of

saving hardware area.

Methodology:
 In our method, we compile the Benchmark program with 32-Bit ARM processor. Studying

Benchmark with binary format should be shown the low code density of outcome file after

compression process with the chosen LZW algorithm. The compressed code will store in the

memory named compressed memory. The untouched processor will have the retrieved

instruction after decompressed by the hardware Decompressor engine. The Decompressor

engine has been designed according to the same algorithm therefore the retrieved instruction

will be exactly same as the original instruction.

How many items will be stored in the dictionary and how many bits long for every item will

determine required dictionary size for doing the compression process. Focusing on the

dictionary size will be the key for improving the compression ratio on interesting Benchmark.

The results will be taken on variant size of Benchmarks to investigate the proper dictionary

size for variant cases. The Decompressor engine is illustrated in the figures 1a, 1b, and 2.

The structure of our proposal Decompressor unit is showing in the Fig.1a. This module include

is mainly constituted by FSM Fig. 1b, code ram control, stack ram control and bit to byte

conversion logic. FSM is the core control logic; code ram control logic will read the coded

code from the outside IN BUF and generate the address for code ram and char ram; stack ram

control logic will generate the address to the stack ram; bit to byte logic will write the

decompressed binary string in byte mode to the OUT BUF.

108

J.Thi-Qar Sci. Vol.2 (1) Jan./2010

FSM explanation will be illustrated in this section as follow;

 IDLE: FSM is idle when in this state. When detect the decode _ena then the decode process

will be started then FSM will go to the RD_DATA state.

 RD_DATA: In this state, the code ram control logic will read one code from the outside IN

BUF then FSM will go to the SCAN_TABLE state.

 SCAN_TABLE: In this state, the code ram control logic will scan the code ram and he char

ram according to the input code. Then FSM will go to the CHK_CODE state .

 CHK_CODE: In this state FSM will check the result of scan. If the code read from the code

ram is great than 8’h02 then the scan should be continued with the code form the code ram as

the new scan address. Until the code from the code ram is less or equal 8’h02 the decode

process of current code is completed. During this scan the char from the char ram will be

stored into the stack ram one by one. Then FSM will go to the ADD TABLE state.

 ADD_TABLE: In this state FSM will add the previous code into the and the first character

of current code into the char ram. Then FSM will go to the OUT_STRING state.

 OUT_STRING: In this state FSM will read stack ram in reverse order and generate the

decompressed binary string. When the stack ram is empty then current decode is completed. If

the is active then another code in is needed to be decompressed and FSM will go to

RD_DATA state or FSM will go to IDLE state and this module will stop work.

Fig. 1a: Architecture of Decompressor Unit

109

J.Thi-Qar Sci. Vol.2 (1) Jan./2010

After implementation the Decompressor unit, we have gotten some data that are shown in

tables 1, 2.

Fig. 1b: Finite State Machine

Fig. 2: Circuit of Decompressor Unit

110

J.Thi-Qar Sci. Vol.2 (1) Jan./2010

From the above power’s results, we conclude the consumption power by Decompressor at

specific frequency is small, beside the most of total power spend on the memory work.

However, the study is showing our design could be running in frequency more than 250-500

MHz, which is showing the successful selection of LZW algorithm to implement as hardware

in such system.

E. R. Bello
[13]

 et al has designed Decompressor in Dictionary-Base for SPARC processor.

He reported his Engine in 40MHz consume power 791mW and Compression Ratio 78.631 for

specific Benchmark. From the above power’s results, we conclude the consumption power by

our Decompressor at same frequency 40MHz is small 23.6574 mW. The most of total power

spend on the memory work. In other hands, the idea of reducing memory size defiantly will

lead for reducing power overall system .

111

J.Thi-Qar Sci. Vol.2 (1) Jan./2010

The Testbench that is designed is presented in figure 3. In the Testbench one task named

seq_gen() will generate a random binary string and store it in the seq_mem which size is

8192x32 bits. The another task named compress_gen() will start LZW_ENCODER

module to start the compression. LZW_ENCODER module will read the data need to be

compressed from the seq_mem one by one. The compression result will be stored into the

code_mem which size is 20000x8 bits. After all the data have been compressed one task,

named decode_gen will start the LZW_DECODER to the decompressing operation.

LZW_DECODE module read the code one bye one from the code_mem and do the

decompressing. The result will be stored into the deseq_mem which size is 8192x32 bits.

Compare the result in the seq_mem and deseq_mem we can verify the LZW_ENCODER and

LZW_DECODER module. During the verification, some raw data and result data should

be logged into some log file. We can directly compare the log files too.

Experimental Results and Verification:
Study of Benchmarks of binary format with variant samples rate will provide obvious details

about proper dictionary size. Sample rate with 9 bits long and dictionary size is 256 items.

Compressing the record is given the results shown in table 3.

Fig.3: Block diagram illustrate the designed Testbench

112

J.Thi-Qar Sci. Vol.2 (1) Jan./2010

Table 3: Compressing Record

Program name Original size (bits)
Size after

compressing (bits)

Compression

ratio (%)

armex 1,564 1,000 63.94

subrout 1,608 1,038 64.55

thumbsub 1,684 1,079 64.07

jump 1,800 1,174 65.22

strcpy 1,828 1,210 66.19

word 1,932 1,218 63.04

blocks 2,068 1,283 62.04

tblock 2,075 1,286 61.98

loadcon 5,908 1,240 20.99

adrlabel 9,672 1,259 13.02

ldrlabel 9,736 1,276 13.11

strtest 43,716 30,954 70.81

swi 46,464 32,729 70.44

shapes 51,256 36,340 70.90

bmw 61,100 41,392 67.74

sorts 61,492 43,353 70.50

newtst 71,372 52,025 72.89

dhrystone 96,272 68,607 71.26

966dhry 103,324 73,625 71.26

920dhry 104,108 73,980 71.06

946dhry 104,760 74,268 70.89

926dhry 105,580 74,884 70.93

primes 428,628 301,402 70.32

strmtst 477,444 335,341 70.24

fft_v5TE 1,274,052 912,892 71.65

fft_v4 1,274,236 913,455 71.69

The average compression ratio 62.34

We have done the same process for different sample rate and we gotten different dictionary

size. The results are presented in figure 4, which shows the fact that dictionary size is not

bigger to give better results to get. The dictionary of 11 bits with 1792 items is given better

compression ratio. However, under hardware’s considerations, we demand smaller dictionary

size than better compression ratio. Therefore, dictionary of 10 bits with 768 dictionary items

seem completely better and spent hardware price is not too high for both cases.

113

J.Thi-Qar Sci. Vol.2 (1) Jan./2010

In the figure 5, it illustrated the compression ratio as a function to variant Benchmarks. We

can conclude as following:

(a) Although we have gotten different compression ratio with different benchmarks, but

distinctly curves trend is still constant.

(b) Considering file size, there is unlike repose for variant cases. It can be seen from the

left side of groove, the file size less than 10 KB with 9 bits and 10 bits item long is effective.

For the groove when the file is at 10-50 KB with 11-12 bits item long has a best result. On the

right side of the groove, the file is above 50 KB with 13 -14 bits item long takes the best result.

For the file above 1M, because the sample is less the rest part of the curvilinear cannot be taken

into consideration.

Fig 4: Dictionary Size with Compression Ratio

114

J.Thi-Qar Sci. Vol.2 (1) Jan./2010

Conclusion Future work:
The technique of Code Compression with specific algorithm will deal with the binary

program and compressed it in offline case which stored in program-memory then retrieve its

instruction by using hardware (Decompressor) in order to processor’s demand, we suppose not

to touch the processor architecture. The Code Compression is a technique to reduce the code

redundancy and to increase the code density, and it is effective for application in the field of

memory storage and code transmission in terms of effective utilization of size area and power

consumption. The code compression technique is taking the complier output then process the

compression on it, the compressing output will store in the memory and retrieve again by using

some hardware Decompressor on demand. The code compressions need no change on the

complier or ISA.

We have chosen the algorithm LZW as efficient code compression technique to compress

program in binary format. The compression is completed in offline case. We have designed

hardware Decompressor according to the same algorithm in order to retrieve the compressing

small size program to the processor on demand. We have verified our design by designing a

Testbench. We have placed the all related design reporting the dissertation. However, we have

used variety size Benchmark to confirm the compression ratio outcome by the LZW scheme.

Our experimental results show that the compression ratio is varies according to the size of

original file. The average compression ratio is 62.34% for a dictionary with 9 bits code and 256

items, where the maximum value of compression ratio is 72.89%. If we use another dictionary

with more than 10 bits, the compression ratio will vary a little. When is used dictionary with 9

bits code, the dictionary size can be limited less than 4 KB.

Fig 5: Compressed Ratio with different Sample

115

J.Thi-Qar Sci. Vol.2 (1) Jan./2010

Applications of our research is about to install the Decompressor which designed by us in

the embedded system that employ in network area. This technique will help to reduce the

memory size and power consume by the system. In the next of our pan is research the

Decompressor performance.

References

1. T. A. Welch. 1984, A Technique for High Performance Data Compression. IEEE Computer. Vol.

17; 8~19.

2. D. A. Huffman. 1952, A Method for the Construction of Minimum-Redundancy Codes.

Proceedings of the I. R. E., Vol. 40 (9); 1098~1101.

3. J. J. Rissanen and G. G., Mar. 1979, Langdon. Arithmetic Coding. IBM J. Research Develop. Vol.

23, No. 2: 146~162

4. J. Ziv, A. Lempel. 1978, Compression of Individual Sequences via Variable-Rate Coding. IEEE

Transactions on Information Theory. Vol. IT-24, No. 5: 530~536

5.A. Wolf and A, Chanian. 1992, Executing compressed programs on an embedded RISC

architetecture. In Proceeding Int’l Symp. On Microarchitecture., 81~91

6.M. Game and A. Booker. 1998, Codepack: Code compression for PowerPC Processors.

International Business Machines (IBM) Corporation..

7.H. Lekatsas, J. Henkel, and W. Wolf. 2001, Design and Simulation of pipelined decompression

architecture for embedded systems. In Proc. ACM/IEEE Int’l Symp. on System System

Synthesis. 63~68

8.H. Lekatsas, J. Henkel, and W. Wolf. 2000, Code Compression for low power embedded system

design. Proc. ACM/IEEE Design Automation Conference., 294-299

9.E. G. Nikolova, D. J. Mulvaney, V. A. Chouliaras, and J. L. Nunez-Yanez. 2003, A Code

Compression Scheme for Improving Soc Performance. International Proceedings Symposium

on System-on-Chip, 35~40

10.L. Benini, A. Macii, and A. Nannarelli. 2002, Code compression for cache energy minimization in

embedded systems. IEE proceedings on computers and digital techniques. 149(4): 157-163

11.D. Das,R. Kumar, and P. P. Chakrabarti. 2005, Dictionary based code compression for variable

length instruction encoding. 18th International Conference on VLSI Design. 545~550

12.Yuan Xie, W. Wolf, and H. Lekatsas. 2006, Code compression for embedded VLIW processors

using variable-to-fixed coding.IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 14(5): 525~536

13.E. Billo, R. Azevedo, G. Araujo, and E. Wanderley Netto. 2005, Design of a Decompressor

Engine on a SPARC Processor. SBCCI’05 Florianopolis, Brazil..

116

J.Thi-Qar Sci. Vol.2 (1) Jan./2010

CODE DENSITY OPTOMIZATION AND IMPLEMENTATION

USING LZW APPROACH BASED ON 32-BIT RISC PROCESSOR

 حسـين علي خضر العيداني عبدالله عبد الامير حسين اليحيى

 قسـم علوم الحاسبات –كليـة التربيـة –جامعة البصرة

 الخلاصة

Itemsbit

Compression Ratio

Benchmarks

% 9 bit 256

72.89

10 bit

