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Introduction 
           The Schrödinger equation is a typical dispersive (linear and/or nonlinear) partial 

differential equation that plays a key role in a variety of areas in mathematical physics. It 

attracted the attention of many researchers and appeared in a wide range of applications 

[6,13,14].Consider the initial-boundary value problem for two-dimensional time dependent 

Schrödinger equation (TDSE) with arbitrary potential function ),( yx  as, 
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    where 1010 ,,, handhggf  are the initial and boundary data. 
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Abstract 

       In this paper, Adomian decomposition method is applied to approximate the solution of 

two-dimensional Schrödinger equation. Also, the convergence proof of the Adomian 

decomposition method is presented. The method was compared with other methods in the 

aspects of convergence and accuracy. The results show that the Adomian decomposition 

method is more accurate, and has better convergence than the other methods in literature, 

and CPU times needed for this problem are reported. 
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        This model is derived from the vector wave equation for electric field which governs the 

propagation of electro-magnetic waves in a homogeneous medium [7].The Adomian 

decomposition method has been applied to problems in several fields of mathematics, physics, 

biology, chemical reaction, and so on. Recently, there has been a great deal of interest in 

applying Adomian decomposition technique for solving a broad class of partial differential 

equations [1-5,9,10]. 

        In this article, the Adomian decomposition method is applied to approximation solution of 

the two-dimensional Schrödinger equation, with proving the convergence of this solution. High 

accurate results and best CPU times are obtained in comparison with Noye-Hayman implicit 

method (N-H IM[11,13], and Paceman-Rachford ADI method(P-R ADIM) [8 ,13]. 

 

      The rest of this paper is organized as follows: the next section describe the Adomian 

decomposition method which applied to approximate the solution of two-dimensional 

Schrödinger equation. In section 3, the results of numerical experiment are introduced. Section 

4 shows the convergence of ADM, and finally conclusions are given in the last section. 
 

Adomian decomposition method 
        In this section, the Adomian decomposition method for partial differential equations is 

applied to solve Schrödinger equation. The decomposition method [1-3] consists of computing 

the solution of equation (1) as an infinite series in which each term can be easily determined by 

the iterative scheme 
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To illustrate, we have written equation (1) in operator forms as 

                             uLLiuL yyxxt )(                                          ...(6)   

  
 with notations yyyyxxxxtt LandLL  ,, . Then, the inverse operator of tL  is defined 

by the definite integral 0t,d)()(L
t

0

1

t  
 . Now, with applying the inverse operator 1

tL  to 

equation (6) subject to initial condition (2), it yields the formula solution to equation (1) 

                          0,)(),(),,( 1   tuLLLiyxftyxu yyxxt               ...(7) 

 
 The Adomian decomposition method [2] assumes a solution of the series form 
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     where the components ),,( tyxuk  are going to be determined recurrently. 
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Substituting these decomposition series into (7) gives                                   
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Acoording to [2] )0,,(0 yxu  is identified with initial data ),( yxf  and the following recurrence 

is proposed  
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Since in practice all (or not) terms of (8) can be calculated to approximate the solution.  Finally 

summing up the iterates according to (9) yields                                           
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Equation (11) represents the approximate solutions resulting from employing the Adomian 

decomposition method. And the exact solution is MM Utyxu  lim),,( . 

 

Numerical experiment and discussions 

 
            To test the ADM described above, we consider equation (1) with potential function 
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Using these data into (10) and (11), we obtain the following successive approximation 
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The ADM introduces the use of MM Utyxu  lim),,( .That gives the exact solution by 
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The results that are obtained for ADM and analytic solution at  1t   are listed in tables 1,2 for 

real and imaginary parts of  ),,( tyxu  respectively. It seems from the results that the ADM in 

convergence is faster to analytic solution with high accuracy. This fact is also illustrated in 

Fig(1). From these figures, we noted that when 4M   the number of terms needed is not 

enough to obtain the approximately accurate solutions. While, 4M  for the results are 

coincident with exact solution. The overall errors can be made even much smaller by adding 

new terms of decomposition. Moreover, the rate of convergence is increased with the increase 

of the total number of terms for 1t .  

      To show the efficiency of the ADM for solving Schrödinger equation, we compare it with 

other methods namely, N-H IM and P-R ADIM (see table 3 and figure 2) for real and 

imaginary parts of ),,( tyxu   respectively. From the results, we see that ADM is better than 

the other methods in accuracy, convergence, execution time (CPU), and computational 

workloads.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Comparison of real part for both of the exact solution and ADM results 

Table 2. Comparison of imaginary part for both of the exact solution and ADM results 
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Table 3. Comparison of the absolute error for ADM, N-HIM and P-RADIM 
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Figure 1. Numerical comparison between exact solution and ADM at the diagonal 
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Convergence analysis 

  
        Convergence of ADM has been discussed by many researchers for different problems 

[10, 5]. Here, we introduce a simple convergence analysis to the two-dimensional time 

dependent Schrödinger equation depending on convergence of the sequence ku .  

      To demonstrate the convergence of the sequence ku , we consider the series   


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

 
N

k

kkN uuS
0

1 )(   has the simple 

form 01 uuS NN   . We wish to show that the sequence of functions that defined by (10) 

converges uniformly to a function ),,( tyxu for Tt 0 . 

 

Definition [12]: The series converges uniformly if the sequence of partial sum converges 

uniformly.           

         According to this definition, ADM is convergent if verifying the following theorem: 

            

Theorem: The solution series of ADM applied to the TDSE with initial condition will 

converge  uniformly if the scalar series

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Proof:    From the recurrence relation (10), we have  
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 Here, for simplicity we assume that  yyxx LLL . 
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Figure 2. Absolute error comparison between the ADM and the other methods 
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  Let )(max tgLC   for Tt 0 . Then (13) yield                               
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 The uniform convergence of the exponential series on any closed finite interval  T,0 , where 

T  is a fixed positive real number, ensures the uniform convergence of 




 
0

1

k

kk uu  and; 

therefore, the sequence  ku  is converging.                                                                                                               

 

Conclusions 
 

         The ADM was used for finding exact and approximate solutions of the two-dimensional 

Schrödinger equation successfully.  In this numerical study the efficiency of ADM was 

demonstrated. A decomposition method avoids the disadvantages that appear by using N-Him 

and P-R RADIM such as extensive computational and tedious workloads. In addition, it is 

more efficient and yields easier calculations. Advantages of ADM are motivated to interest for 

improving and extending the application of this method for solving nonlinear fluid flow 

problems in the future works. 
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 البعدثنائية شرودنكر حَلِّ معادلة  ل تحليل ادومينطريقة 

 

 عبدالستار جابر علي السيف

 العراق-صرةالب-قسم الرياضيات-كلية التربية-جامعة البصرة

 

 الخلاصة
       

البعد، ثنائية ) Schrödingerشرودنكر) تقريبِ حَلِّ معادلةِ ل Adomian) تحليل ادومين)طريقة  هنا تم تطبيق        

ََ بتّن   اثبتتتالتقاربِ والدقةِ.  باستعمال مقاييسقِ الأخرى ائرنتْ بالطروطريقةُ. الطريقة قُ ال هذه برهان تقاربَ و النتَتائِ

 التت  تحتاهاتا وقتا لاألُت  نتن  تثبيتت  قِ الأخترى ، ائتأكثترُ دق تة ، وألُتلُ تقتاربُ مِتنْ الطر نتحليل ادوميطريقة 

 .لةِ سّهذه الم لحل وحدة المعالجة المركزيةِ 

 


