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Abstract

In this paper, Adomian decomposition method is applied to approximate the solution of
two-dimensional Schrédinger equation. Also, the convergence proof of the Adomian
decomposition method is presented. The method was compared with other methods in the
aspects of convergence and accuracy. The results show that the Adomian decomposition
method is more accurate, and has better convergence than the other methods in literature,
and CPU times needed for this problem are reported.
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Introduction

The Schrodinger equation is a typical dispersive (linear and/or nonlinear) partial
differential equation that plays a key role in a variety of areas in mathematical physics. It
attracted the attention of many researchers and appeared in a wide range of applications
[6,13,14].Consider the initial-boundary value problem for two-dimensional time dependent
Schrodinger equation (TDSE) with arbitrary potential function y =w(x, y) as,

iu, +Vu+pu=0 0<xy<l t>0 ..(1)
u(x,y,0) = f(x,y) 0<xvy<], ..(2)
u(,y,t) =go(y,t), uy,t)=g,(y.t) 0<y<1 t=0 .3
u(x,0,t) =h,(x,t), u(xLt)=nh(xt) 0<x<1 t>0

where f,g,,0,,h, and h, are the initial and boundary data.
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This model is derived from the vector wave equation for electric field which governs the
propagation of electro-magnetic waves in a homogeneous medium [7].The Adomian
decomposition method has been applied to problems in several fields of mathematics, physics,
biology, chemical reaction, and so on. Recently, there has been a great deal of interest in
applying Adomian decomposition technique for solving a broad class of partial differential
equations [1-5,9,10].

In this article, the Adomian decomposition method is applied to approximation solution of
the two-dimensional Schrodinger equation, with proving the convergence of this solution. High
accurate results and best CPU times are obtained in comparison with Noye-Hayman implicit
method (N-H IM[11,13], and Paceman-Rachford ADI method(P-R ADIM) [8 ,13].

The rest of this paper is organized as follows: the next section describe the Adomian
decomposition method which applied to approximate the solution of two-dimensional
Schrédinger equation. In section 3, the results of numerical experiment are introduced. Section
4 shows the convergence of ADM, and finally conclusions are given in the last section.

Adomian decomposition method

In this section, the Adomian decomposition method for partial differential equations is
applied to solve Schrédinger equation. The decomposition method [1-3] consists of computing
the solution of equation (1) as an infinite series in which each term can be easily determined by
the iterative scheme

u, = f(x,y) given ..(4)

Ui :iuk (9)

To illustrate, we have written equation (1) in operator forms as
Lu=i(L,+L, +y)u -(6)

with notations L, =0,, L, =0,, and L, =0,. Then, the inverse operator ofL, is defined

by the definite integral L;'(-) = _[ ;(-) dt, t> 0. Now, with applying the inverse operator L;* to
equation (6) subject to initial condition (2), it yields the formula solution to equation (1)
u(x,y,t) = fF(x,y)+i L' (Ly+L, +y)u =0 ..(7)

The Adomian decomposition method [2] assumes a solution of the series form

u(x, y,t)=iuk(x, y,t) ..(8)

where the components u, (X, y,t) are going to be determined recurrently.
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Substituting these decomposition series into (7) gives
ZU (x,y,t) = f(x,y)+i Z L (L +Ly, +3)u, (X, y,1) ..(9)
k=0

Acoording to [2] u,(x, y,0) is identified with initial data f (x,y) and the following recurrence
is proposed
Up = f (X’ y)
Ups =1 LA (LtLy, +9)u, (10)
=ij;(LXX+LW+z//)ukdr k=012,...

Since in practice all (or not) terms of (8) can be calculated to approximate the solution. Finally

summing up the iterates according to 9) yields
M

Uy=Du, M=1 ..(11)
k=0

Equation (11) represents the approximate solutions resulting from employing the Adomian
decomposition method. And the exact solution isu(x, y,t) = lim U,.

M —w

Numerical experiment and discussions

To test the ADM described above, we consider equation (1) with potential function
pixy) =120
x*y*

Using these data into (10) and (11), we obtain the following successive approximation
U 0 — X2 y2

and the initial condition f (x,y) = x*y?.

U, = x?y? + x?y? it

U, =x’y* +x°y? it +x2y?- ()
U, =x?y? +x?y? it + x%y? - (2)| Xzyz'—(lt3?3

(it)> (it)3
U, =Xy [@+it+—— o ?4-

The ADM introduces the use of u(x,y,t) =Ilim U,, - That gives the exact solution by

M 5w

u(x, y,t) = x*y%e"
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The results that are obtained for ADM and analytic solution at t =1 are listed in tables 1,2 for
real and imaginary parts of u(x,y,t) respectively. It seems from the results that the ADM in
convergence is faster to analytic solution with high accuracy. This fact is also illustrated in
Fig(1). From these figures, we noted that when M <4 the number of terms needed is not
enough to obtain the approximately accurate solutions. While, M >4 for the results are
coincident with exact solution. The overall errors can be made even much smaller by adding
new terms of decomposition. Moreover, the rate of convergence is increased with the increase
of the total number of terms fort =1.

To show the efficiency of the ADM for solving Schrédinger equation, we compare it with
other methods namely, N-H IM and P-R ADIM (see table 3 and figure 2) for real and

imaginary parts of u(x,y,t) respectively. From the results, we see that ADM is better than

the other methods in accuracy, convergence, execution time (CPU), and computational
workloads.

Table 1. Comparison of real part for both of the exact solution and ADM results

x | v | Exact u Adomuan T, [ Adomian T, | Adomian 77, |Adomian U/,
0.110.1]540302E-05 | 5 00000E-05 5.41667E-05 5.40303E-05 5.40302E-05
0.2 |02 |8.64484E-04 | B 00000E-04 B.6666TE-04 8.64484E-04 8.64484F-04
03103 4.37645E-03 | 4.05000E-03 4. 38750E-03 4.37645E-03 4.37645E-03
0.4 |04 | L38317E-02 | 1.28000E-02 1.38667E-02 1.38317E-02 1.38317E-02
05105 ]337689E-02 | 3. 12500E-02 3.38542E-02 3.376859E-02 3.37689E-02
0.6 |06 | 700232E-02 | 6.48000E-02 J7.02000E-02 7.00232E-02 7.00232E-02
07107 11.29727E-01 | 1.20050E-01 1.30054E-01 1.25727E-01 1.29727E-01
0.8 |08 |2.21308E-01 |2 04800E-01 2.21867E-01 2.21308E-01 2.21308E-01
0.9 105 3.54492E-01 | 3.28050E-01 3.55388E-01 3.54453E-01 3.54492E-01

Table 2. Comparison of imaginary part for both of the exact solution and ADM results

x| > |Exactu Adomian U/, |Adomian U, |Adomian 7, |Adomian I,
0.1{0.1]8.41471E-05 | 1.00000E-04 8.33333E-05 | 841468E-05 | 8.41471E-05
0.2 [0.2 | L34635E-03 | 1.60000E-03 1.33333E-03 1.34635E-03 | 1.34635E-03
037103 [6.81592E-03 |5 10000E-03 6. 75000E-03 6.8158%E-03 | 6.81592E-03
0.4 {04 |2.1517E-02 | 2.56000E-02 213333E-02 [ 2.15416E-02 | 2.15417E-02
0.5 {05 |5.25919E-02 | 6.25000E-02 5.20833E-02 | 5.25%18E-02 | 5.25919E-02
0.6 [ 0.6 | LOOSSE-0L | 1.28600E-01 1.08000E-01 1.0%054E-0 1.09055E-01
07107 ]12.02037E-01 | 240100E-01 2.00053E-01 2.02036E-01  [2.02037E-01
0.8 [ 0.8 |3.4466TE-01 |4.03600E-01 3.41533E-01 544663E-01 | 3.4466TE-01
0.910% [552089E-01 |6.36100E-01 5.46750E-01 5.52087E-01 3.52089E-01
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Table 3. Comparison of the absolute error for ADM, N-HIM and P-RADIM

x|y h‘{_U -.aw| |I‘{_UP—R&DM| )”‘U4 qmy‘ %"Ua :my‘ |“'U12 (AEM|
real  imag | real  imag | real  imag | real  imag | real imag
01 101 |4.8E-05 1.3E-05 | 6.5E-05 13E-05 [ 14E-07 81E-07 | 2.9E-11 2.7E-10 I I
02 102 [97E-05 3.1E-05 | 9.0E-05 44E-05 | 22E-06 1.3E-05 | 47E-10 4.3E-09 1 I
0.3 |03 [73E-05 L1E-04 | 3.7E-04 2.9E-04 | 11E-05 6.6E-05 | 23E-09 22E-03 1 I
04 104 |39E-04 S4E-04 | 2.7E-04 3.0E-04 | 3.5E-05 2.1E-04 | 75E-09 6.9E-08 I I
05105 |4.2E-04 6.3E-05 | 27E-03 1AE-03 | 8.5E-05 51E-04 | 1.7E-08 1.7E-07 I I
06 |06 [ 17E-03 44E-04 | 4.6E-05 4.0E-03 | 1.8E-04 1.1E-03 | 37E-08 3.6E-07 1 I
07 107 | 26E-03 S4E-04 | 44E-03 62E-03 | 3.3E-04 20E-03 | 6.0E-08 6.6E-07 I I
08 |08 |&1E-04 52E-04 | 3.6E-03 4.3E-03 | 5.6E-04 33E-03 | 1.2E-07 1.1E-06 I I
09 109 | 70E-04 4.1E-04 | 1.5E-03 22E-03 | 9.0E-04 53E-03 | 2.1E-07 1.9E-06 I I
CPUtime | 22013s[13] TL255[13] 0015 00165 00315
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Figure 1. Numerical comparison between exact solution and ADM at the diagonal
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Figure 2. Absolute error comparison between the ADM and the other methods

Convergence analysis

Convergence of ADM has been discussed by many researchers for different problems
[10, 5]. Here, we introduce a simple convergence analysis to the two-dimensional time

dependent Schrodinger equation depending on convergence of the sequence {uk }
To demonstrate the convergence of the sequencefu,}, we consider the series

0 N
S = Z(UM —U,). The Nth partial sum Sy :Z(UM —U,)  has the simple
k=0 k=0

formS, =U,,; —U,. We wish to show that the sequence of functions that defined by (10)
converges uniformly to a function u(x,y,t)forO<t<T.

Definition [12]: The series converges uniformly if the sequence of partial sum converges
uniformly.

According to this definition, ADM is convergent if verifying the following theorem:
Theorem: The solution series of ADM applied to the TDSE with initial condition will

converge uniformly if the scalar series Z:Huk+1 —Uy H converges uniformly.
k=0

Proof: From the recurrence relation (10), we have
t
U = = [ LU, —u ) g0 dr k=1 .(12)

And thus fu,, —u] < [ L, —u )ffo@)]dr k=1 -(13)

Here, for simplicity we assume that L =L, +L  +y .
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Let C = max|L||g(®)| for 0<t<T. Then (13) yield
Juge —u ] < CJ Ju, —u,] dz - (14)

Since |ju, —u,| < I;”Uo””g(f)”dT <C|Cy|t , we obtain
(Ct)k+1

(k +1)!
The uniform convergence of the exponential series on any closed finite interval [0,T ], where

k=012,...

Juea vl <[Cil

00
T is a fixed positive real number, ensures the uniform convergence of ZHUm —UkH and;
k=0

therefore, the sequence {u, } is converging.

Conclusions

The ADM was used for finding exact and approximate solutions of the two-dimensional
Schrodinger equation successfully. In this numerical study the efficiency of ADM was
demonstrated. A decomposition method avoids the disadvantages that appear by using N-Him
and P-R RADIM such as extensive computational and tedious workloads. In addition, it is
more efficient and yields easier calculations. Advantages of ADM are motivated to interest for
improving and extending the application of this method for solving nonlinear fluid flow
problems in the future works.
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