Vol.2 (1)

ISSN 1991-8690 website: http://jsci.utq.edu.iq

 \dot{L}_n – proper Functions

الترقيم الدولي ٨٦٩٠ ـ ١٩٩١ Email: utjsci@utq.edu.iq

Adnan Hashim Abdul-Wahid Al-khafaji Computer Department- Thi-Qar University

<u>Abstract</u>

In this paper, the concepts of L_n – proper Functions are defined depending on the definition of L – spaces which was presented by (Kelley, J.C. : 1963 in [3]) and the concept of Proper Functions which was presented by (Bourbaki, N. in [1]). Also we used this concept to study some theorems which are related to the concept of proper Functions.

<u>1. Introduction:</u>

Kelley, J.C. at 1963 in [3] presented a new concept, namely, Bitopological spaces which theirs members are sets depend upon two topologies in theirs definition on the same nonempty set.

Bitopological spaces which their members are L-open sets are called L-topological spaces or L-spaces. The concept of L-spaces are used in many principle topological concepts, for example Compactness, Connectedness, Separation axioms, Convergence and others. The concept of L_n -spaces is defined depending on the concept of L-spaces.

In this paper, the concept of L_n – proper functions is defined depending on the concept of L_n – spaces and the concept of proper functions which was presented by Bourbaki, N. at 1989 in [1]. Also we used this concept to study some theorems which are related to the concept of proper functions.

<u>2.1 Definitions [1], [2], [4].</u> Let X & Y be topological spaces and $f: X \to Y$ be a function. Then:

(i) f is called a continuous function if $f^{-1}(A)$ is an open set in X for every open set A in Y.

(*ii*) f is called an **open function** if f(A) is an open set in Y for every open set A in X.

(*iii*) f is called a closed function if f(A) is a closed set in Y for every closed set A in X.

<u>2.2 Definition [1]</u>: Let X and Y be topological spaces. Then the function $f: X \to Y$ is said to be proper function if:

79

Vol.2 (1)

(i) f is a continuous function.

(ii) $f \times i_z : X \times Z \to Y \times Z$ is a closed function for every topological space Z.

<u>2.3 Proposition [1]</u>: Let $f: X \to Y$ be a proper function. Then if $T \subseteq Y$, then the function $f_T: f^{-1}(T) \to T$ which agrees with f on $f^{-1}(T)$ is proper.

2.4 Definitions:

1. Let $\tau_1, \tau_2, \dots, \tau_n$ $(n \ge 2)$ be topologies on a nonempty set X and A, $B \subseteq X$. Then

i. A is called an L_n – open set in X if there is a τ_1 – open set U in X such that $U \subseteq A \subseteq \bigcup_{i=2}^{n} \overline{U}^i$, where \overline{U}^i is the *i*-th closure set of U in X w.r.t. τ_i $(2 \le i \le n)$.

The collection of all L_n - open sets in X is denoted by $L_n - O(X)$, and $(X, \tau_1, \tau_2, \dots, \tau_n)$ is called an L_n - **topological space** or an L_n - **space** [for easiness written X is called an L_n - **space**], and the open sets in $(X, \tau_1, \tau_2, \dots, \tau_n)$ are L_n - open sets in X.

ii. B is called an L_n - closed set in X if and only if B^c is an L_n - open set in X.

The collection of all L_n - closed sets in X is denoted by $L_n - C(X)$.

2. The L_n -product space of L_n -spaces $(X, \tau_1, \tau_2, ..., \tau_n)$ & $(Y, \tau'_1, \tau'_2, ..., \tau'_n)$ is the L_n -space $(X \times Y, \mu_1, \mu_2, ..., \mu_n)$, where μ_1 , $\mu_2, ..., \mu_n$ are the product

topologies on $X \times Y$ induced by $(\tau_1 \& \tau'_1)$, $(\tau_2 \& \tau'_2)$, $...(\tau_n \& \tau'_n)$ respectively.

- 3. The L_n -subspace A of an L_n -space $(X, \tau_1, \tau_2, ..., \tau_n)$ is the L_n -space $(A, \tau_{1A}, \tau_{2A}, ..., \tau_{nA})$, where $\tau_{1A}, \tau_{2A}, ..., \tau_{nA}$ are the relative topologies of $\tau_1, \tau_2, ..., \tau_n$ respectively on A in X.
- 4. Let $(X, \tau_1, \tau_2, \dots, \tau_n)$ & $(Y, \tau'_1, \tau'_2, \dots, \tau'_n)$ be L_n -spaces, and let $f: (X, \tau_1, \tau_2, \dots, \tau_n) \rightarrow (Y, \tau'_1, \tau'_2, \dots, \tau'_n)$ be a function. Then:
- (i) f is called L_n -continuous if $f^{-1}(A)$ is an L_n -open set in X for all $A \in \tau'_1$.
- (ii) f is called L_n^* -continuous if $f^{-1}(A)$ is an L_n -open set in X for all $A \in L_n O(Y)$.
- (iii) f is called L_n open if f(A) is an L_n open set in Y for all $A \in \tau_1$.
- (iv) f is called L_n^* -open if f(A) is an L_n -open set in Y for all $A \in L_n O(X)$.

Vol.2 (1)

- (v) f is called L_n closed if f(A) is an L_n closed set in Y for every τ_1 closed set A in X.
 - (vi) f is called $L_n * closed$ if f(A) is an $L_n closed$ set in Y for every $L_n closed$ set A in X.
- (vii) The bijective function f is called L_n homeomorphism if f is L_n open $(L_n \text{closed})$ and L_n continuous.
- (viii) The bijective function f is called $L_n *$ -homeomorphism if f is $L_n *$ -open $(L_n *$ -closed) and $L_n *$ -continuous.
- 5. The L_n space X is said to be L_n homeomorphic to the L_n space Y if there is an L_n - homeomorphism of X on to Y, [written $X \approx Y$].
- 6. The L_n space X is said to be L_n^* homeomorphic to the L_n space Y if there is an L_n^* - homeomorphism of X on to Y, [written $X \approx Y$]

2.5 Remarks:

- 1. Let $(X, \tau_1, \tau_2, \dots, \tau_n)$ be an L_n space. Then
 - *i*. τ_1 is a sub collection of $L_n O(X)$, (since $U \subseteq U \subseteq \bigcup_{i=2}^n \overline{U}^i$ for all $U \in \tau_1$).
 - $\begin{array}{lll} \label{eq:constraint} \textbf{ii. If } nl < n2 \leq n, \ \text{then } & L_{n1} O(X) \subseteq L_{n2} O(X), \ \text{since } \quad \text{if } & A \in L_{n1} O(X) \\ \Rightarrow \exists U \in \tau_1 \quad \textbf{ > } & U \subseteq A \subseteq \bigcup_{i=2}^{n^1} \overline{U}^i \ \& \bigcup_{i=2}^{n^1} \overline{U}^i \subseteq \bigcup_{i=2}^{n^2} \overline{U}^i \quad \Rightarrow U \subseteq A \subseteq \bigcup_{i=2}^{n^2} \overline{U}^i \\ \Rightarrow A \in L_{n2} O(X) \ \Rightarrow L_{n1} O(X) \subseteq L_{n2} O(X). \ \text{Moreover } & L_2 O(X) \subseteq L_3 O(X) \subseteq \dots \\ L_3 O(X) \subseteq \dots \\ L_n O(X) . \end{array}$
 - *iii.* If $\tau_1 = D$ is the discrete topology, then $L_n O(X) = \tau_1 = D$. *iv.* If $\tau_1 = \{\phi, X\}$ is the indiscrete topology, then $L_n - O(X) = \tau_1 = \{\phi, X\}$. *v.* If $\tau_i = D$ is the discrete topology for all $(2 \le i \le n)$, then $L_n - O(X) = \tau_1$.
 - *vi.* If U is $\bigcap_{i=1}^{n} \tau_{i}$ open in X & A is L_{n} open in X, then $U \cap A$ is an L_{n} open set in X, (since if $A \in L_{n} O(X)$. $\Rightarrow \exists V \in \tau_{1} \ni V \subseteq A \subseteq \bigcup_{i=2}^{n} \overline{V}^{i} \Rightarrow U \cap V \subseteq U \cap A \subseteq U \cap \bigcup_{i=2}^{n} \overline{V}^{i} \subseteq \bigcup_{i=2}^{n} \overline{U \cap V}^{i}$ by using (*v*). Since $U \in \bigcap_{i=1}^{n} \tau_{i} \& V \in \tau_{1}$. $\Rightarrow U \cap V \in \tau_{1} . \Rightarrow U \cap A \in L_{n} O(X)$). *vii.* If A is $\bigcap_{i=1}^{n} \tau_{i}$ - open in X and $B \in L_{n} - O(X)$, then $A \cap B \in L_{n} - O(A)$. (since

if

2.

$$\begin{split} B &\in L_n - O(X) . \Rightarrow \exists V \in \tau_1 \ni V \subseteq B \subseteq \bigcup_{i=2}^n \overline{V}^i . \Rightarrow V \cap A \subseteq \\ B \cap A \subseteq A \cap \bigcup_{i=2}^n \overline{V}^i \subseteq \bigcup_{i=2}^n \overline{V \cap A}^i \text{ by using } (v). \\ \text{Since } \overline{V \cap A}^i \cap A = \overline{V \cap A}^{iA} . \Rightarrow V \cap A \subseteq B \cap A \subseteq A \cap \bigcup_{i=2}^n \overline{V}^i \subseteq \bigcup_{i=2}^n \overline{V \cap A}^{iA}. \\ \text{Since } V \in \tau_1 \Rightarrow V \cap A \in \tau_{1A} \Rightarrow B \cap A \in L_n - O(A). \\ \text{Let } (X, \tau_1, \tau_2, \dots, \tau_n) \& (Y, \tau_1', \tau_2', \dots, \tau_n') \text{ be } L_n - \text{spaces, and let } f: (X, \tau_1, \tau_2, \dots, \tau_n) \to (Y, \tau_1', \tau_2', \dots, \tau_n') \text{ be a function. Then if } f: (X, \tau_1) \to (Y, \tau_1') \end{split}$$

is a continuous [open,closed] function then $f:(X,\tau_1,\tau_2,\ldots,\tau_n) \to (Y,\tau'_1,\tau'_2,\ldots,\tau'_n)$ is an L_n - continuous [L_n - open, L_n - closed] function respectively.

<u>3.1 Definition</u>: Let X and Y be L_n – spaces and $f: X \to Y$ be a function. Then f is called an L_n – proper function if:

(i)f is an L_n -continuous function.

 $(ii) f \times i_z : X \times Z \to Y \times Z$ is L_n -closed for every L_n -space Z.

<u>3.2 Proposition</u>: Let $(X, \tau_1, \tau_2, ..., \tau_n) \& (Y, \tau'_1, \tau'_2, ..., \tau'_n)$ be L_n - spaces such that the function $f: (X, \tau_1) \to (Y, \tau'_1)$ is proper. Then $f: (X, \tau_1, ..., \tau_n) \to (Y, \tau'_1, ..., \tau'_n)$ is an L_n - proper function for every topologies $\tau_i \& \tau'_i, (2 \le i \le n)$ on X & Y respectively.

Proof:

 $f: (X, \tau_1, \tau_2, \dots, \tau_n) \to (Y, \tau'_1, \tau'_2, \dots, \tau'_n) \text{ is an } L_n - \text{continuous by using (2.5)}.$

To prove that $f \times i_z$ is L_n -closed, let $(Z, \eta_1, \eta_2, ..., \eta_n)$ be an L_n -space. $\Rightarrow (Z, \eta_1)$ is a topological space. Since $f : (X, \tau_1) \to (Y, \tau'_1)$ is a proper function $\Rightarrow f \times i_z : (X \times Z, \mu_1) \to (Y \times Z, \mu'_1)$ is a closed function for every topological space $(Z, \eta_1) \Rightarrow f \times i_z : (X \times Z, \mu_1, \mu_2, ..., \mu_n) \to (Y \times Z, \mu'_1, \mu'_2, ..., \mu'_n)$ is an L_n -closed function for every L_n -space $(Z, \eta_1, \eta_2, ..., \eta_n)$ by using (2.5), where $(X \times Z, \mu_1, \mu_2, ..., \mu_n)$ and $(Y \times Z, \mu'_1, \mu'_2, ..., \mu'_n)$ are the L_n -product spaces of $[(X, \tau_1, \tau_2, ..., \tau_n) \& (Z, \eta_1, \eta_2, ..., \eta_n)]$ and $[(Y, \tau'_1, \tau'_2, ..., \tau'_n) \& (Z, \eta_1, \eta_2, ..., \eta_n)]$ respectively. $\Rightarrow f : (X, \tau_1, \tau_2, ..., \tau_n) \to (Y, \tau'_1, \tau'_2, ..., \tau'_n)$ is an L_n -proper function.

<u>3.3 Proposition</u>: Let $f:(X,\tau_1,\tau_2,...,\tau_n) \to (Y,\tau'_1,\tau'_2,...,\tau'_n)$ be an L_n - proper function. Then if T is a subset of Y such that $T \in \bigcap_{i=1}^n \tau'_i$ and

Vol.2 (1)

 $f:(X,\tau_1) \to (Y,\tau'_1)$ is a continuous function, then the function $f_T:(f^{-1}(T),\tau_{1f^{-1}(T)},...,\tau_{nf^{-1}(T)}) \to (T,\tau'_{1T},...,\tau'_{nT})$ which agrees with f on T is an L_n – proper function.

Proof:

To prove that f_T is an L_n - continuous function. Since $f:(X,\tau_1) \to (Y,\tau'_1)$ is a continuous function. $\Rightarrow f_T:(f^{-1}(T),\tau_{1f^{-1}(T)}) \to (T,\tau'_{1T})$ is a continuous function by using

(2.3). $\Rightarrow f_T: (f^{-1}(T), \tau_{1f^{-1}(T)}, \tau_{2f^{-1}(T)}, ..., \tau_{nf^{-1}(T)}) \to (T, \tau'_{1T}, \tau'_{2T}, ..., \tau'_{nT})$ is an L_n - continuous function by using (2.5).

To prove that $(f_T \times i_Z)$ is an L_n -closed function, let $(Z, \eta_1, \eta_2, ..., \eta_n)$ be an L_n -space. Let $(X \times Z, \mu_1, \mu_2, ..., \mu_n)$ & $(Y \times Z, \mu'_1, \mu'_2, ..., \mu_n)$ are the L_n -product spaces of $[(X, \tau_1, \tau_2, ..., \tau_n) \& (Z, \eta_1, \eta_2, ..., \eta_n)] \& [(Y, \tau'_1, \tau'_2, ..., \tau'_n) \& (Z, \eta_1, \eta_2, ..., \eta_n)]$ respectively.

Since $(f_T \times i_Z) = (f \times i_Z)_{T \times Z}$. $\Rightarrow (f_T \times i_Z) : ((f \times i_Z)^{-1} (T \times Z), \mu_{I(f \times i_Z)^{-1} (T \times Z)}, \mu_{2(f \times i_Z)^{-1} (T \times Z)}, \dots, \mu_{n(f \times i_Z)^{-1} (T \times Z)}) \to (T \times Z, \mu'_{1T \times Z}, \mu'_{2T \times Z}, \dots, \mu'_{nT \times Z})$ Let B be a $\mu_{I(f \times i_Z)^{-1} (T \times Z)} - \text{closed}$ in

 $(f \times i_{z})^{-1}(T \times Z) \Rightarrow B = (f \times i_{z})^{-1}(T \times Z) \cap A,$ $A^{c} \in \mu_{1} \Rightarrow (f_{T} \times i_{z})(B) = (T \times Z) \cap (f \times i_{z})(A). \text{ Since } f \text{ is an } L_{n} - \text{proper function.} \Rightarrow (f \times i_{z}) \text{ is an } L_{n} - \text{closed function.} \Rightarrow (f \times i_{z})(A) \in L_{n} - C(Y \times Z).$

Let
$$(f \times i_Z)(A) = F \Rightarrow (f_T \times i_Z)(B) = (T \times Z) \cap F$$
. Since
 $(T \times Z) - [(T \times Z) \cap F] = [(Y \times Z) - F] \cap (T \times Z), \quad T \in \bigcap_{i=1}^n \tau'_i \quad \& \ Z \in \bigcap_{i=1}^n \eta_i. \Rightarrow$
 $T \times Z \in \bigcap_{i=1}^n \mu'_i \quad \text{by} \quad (2.5). \quad \text{Since} \quad F \in L_n - C(Y \times Z).$
 $\Rightarrow [(Y \times Z) - F] \in L_n - O(Y \times Z) \Rightarrow [(Y \times Z) - F] \cap (T \times Z) \in L_n - O(T \times Z) \quad \text{by} \quad (2.5)$
 $.\Rightarrow (T \times Z) \cap F \in L_n - C(T \times Z). \Rightarrow (f_T \times i_Z)(B) \in L_n - C(T \times Z). \Rightarrow (f_T \times i_Z) \text{ is}$

an L_n -closed function. $\Rightarrow f_T$ is an L_n -proper function.

3.4 Examples:

(*i*) Let (X, τ_1) be a topological space and F be τ_1 -closed in X. Then the function $i: (F, \tau_{1F}) \rightarrow (X, \tau_1)$ defined by i(x) = x for all $x \in F$, is a proper function, therefore

Vol.2 (1)

- $i:(F, \tau_{1F}, \tau_{2F}, ..., \tau_{nF}) \rightarrow (X, \tau_1, \tau_2, ..., \tau_n)$ is an L_n -proper function for every topologies τ_i , $(2 \le i \le n)$ on X by (3.2).
- (*ii*) Let (X,T) be a topological space and $I_x : (X,T) \to (X,T)$ such that $I_x(x) = x$, for all $x \in X$. Then I_x is a proper function, therefore $I_x : (X,\tau_1,\tau_2,...,\tau_n) \to (X,\tau_1,\tau_2,...,\tau_n)$ is an
- L_n proper function for every topologies τ_i , $(2 \le i \le n)$ on X by (3.2).
 - (*iii*) Let u be the usual topology on \Re , and let $[a,b) \subseteq \Re, a < b$. Then the function $i:([a,b),u_{[a,b)},...,u_{[a,b)}) \rightarrow (\Re,u,...,u)$ (*n-times*) defined by i(x) = x for all $x \in [a,b)$, is an L_n -proper function, but $i:([a,b),u_{[a,b)}) \rightarrow (\Re,u)$ is not a proper function, (since it is not a closed function [1]).

(*iv*) Let n=2 and let u be the usual topology on \Re , and let $f: \Re \to \Re$ be the function such that f(x) = 0 for all $x \in \Re$. Then $f: (\Re, u) \to (\Re, u)$ is a closed and continuous function, therefore $f: (\Re, u, u) \to (\Re, u, u)$ is an L_n -closed and an L_n -continuous function. But $f: (\Re, u, u) \to (\Re, u, u)$ is not L_n -proper function, since $(f \times i_{\Re}): (\Re^2, U, U) \to (\Re^2, U, U)$ defined by $(f \times i_{\Re})(x, y) = (0, y)$ for all $(x, y) \in \Re^2$, is not an L_n -closed function, where U is the usual topology on \Re^2 . Since $K = \{(x, y) \in \Re^2 / xy = 1\}$ is U-closed in \Re^2 and $(f \times i_{\Re})(K) = \{0\} \times \Re \setminus \{0\} \notin L_n - C(\Re \times \Re)$. Since $\{0\} \times \Re \setminus \{0\} \approx \Re \setminus \{0\}$ & $\overline{\Re \setminus \{0\}}^{L_n} = \Re$, therefore $f: (\Re, u, u) \to (\Re, u, u)$ is not an L_n -proper function. Therefore $f: (\Re, u) \to (\Re, u)$ is not proper function by (3.2).

<u>3.5 Definitions</u>: Let X & Y be L_n – spaces and $f: X \to Y$ be a function. Then:

(i) f is called an $L_n *$ -proper function if:

1. f is an L_n – continuous function.

2. $(f \times i_z)$ is an $L_n *$ -closed function for every L_n -space Z.

(ii)f is called an $L_n **-$ proper function if:

1. f is an L_n^* - continuous function.

2. $(f \times i_z)$ is an L_n^* -closed function for every L_n -space Z.

Notice that: f is an $L_n **-$ proper function f is an $L_n *-$ proper function f is an $L_n -$ proper function

<u>3.6 Proposition</u>: Let $f:(X,\tau_1,...,\tau_n) \to (Y,\tau'_1,...,\tau'_n) \& g:(Y,\tau'_1,...,\tau'_n) \to (W,\tau''_1,...,\tau''_n)$ be L_n - continuous functions. Then:

- (i) If f & g are L_n -proper & L_n^* -proper function respectively, and if f is an L_n^* -continuous function, then $g \circ f$ is an L_n -proper function.
- (*ii*) If f & g are L_n -proper & L_n^* -proper respectively, and if $g:(Y,\tau'_1) \to (W,\tau_1'')$ is a continuous function, then $g \circ f$ is an L_n -proper function.
- (*iii*) If $g \circ f$ is an L_n -proper function, f is surjective and $f:(X,\tau_1) \to (Y,\tau'_1)$ is a continuous function, then g is an L_n -proper function.

(*iv*) If $g \circ f$ is an L_n -proper function, and if g is an injective L_n^* -continuous function, then f is an L_n -proper function.

Proof:

(i)

To prove that $g \circ f$ is L_n - continuous. Let $V \in \tau''_1$. Since g is L_n - continuous $\Rightarrow g^{-1}(V) \in L_n - O(Y)$. Since f is L_n^* - continuous $\Rightarrow f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \in L_n - O(X) \Rightarrow g \circ f$ is an L_n - continuous function by (2.4).

To prove that $(g \circ f) \times i_z$ is L_n -closed. Let $(Z, \eta_1, \eta_2, ..., \eta_n)$ be an L_n -space. Observe that $(g \circ f) \times i_z = (g \times i_z) \circ (f \times i_z)$.

 $(X \times Z, \mu_1, ..., \mu_n) \xrightarrow{j \rtimes Z} (Y \times Z, \mu'_1, ..., \mu'_n) \xrightarrow{g \rtimes Z} (W \times Z, \mu''_1, ..., \mu''_n)$ where $(X \times Z, \mu_1, ..., \mu_n), (Y \times Z, \mu'_1, ..., \mu'_n) \& (W \times Z, \mu''_1, ..., \mu''_n)$ are the L_n -product spaces of $[(X, \tau_1, \tau_2, ..., \tau_n) \& (Z, \eta_1, \eta_2, ..., \eta_n)], [(Y, \tau'_1, \tau'_2, ..., \tau'_n) \& (Z, \eta_1, \eta_2, ..., \eta_n)] \& [(W, \tau''_1, \tau''_2, ..., \tau''_n) \& (Z, \eta_1, \eta_2, ..., \eta_n)]$ respectively. Let F be μ''_1 -closed. Since f & g are L_n -proper & $L_n *$ -proper respectively. Let F be μ''_1 -closed. Since f & g are L_n -closed & $L_n *$ -closed respectively. $\Rightarrow f \times i_Z \& g \times i_Z$ are L_n -closed set in $W \times Z$ by (2.4) $\Rightarrow ((g \times i_Z) \circ (f \times i_Z))(F)$ is an L_n -closed function by $(2.4) \Rightarrow (g \circ f) \times i_Z$ is an L_n -closed function. $\Rightarrow g \circ f$ is an L_n -proper function.

To prove that $g \circ f$ is L_n - continuous. Let $V \in \tau''_1$. $\Rightarrow g^{-1}(V) \in \tau'_1$ (since $g:(Y,\tau'_1) \to (W,\tau_1'')$ is continuous) $\Rightarrow g^{-1}(V) \in \tau'_1$. Since f is L_n - continuous $\Rightarrow f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \in L_n - O(X) \Rightarrow g \circ f$ is an L_n - continuous function by (2.4).

To prove that $(g \circ f) \times i_Z$ is L_n -closed. Let $(Z, \eta_1, \eta_2, ..., \eta_n)$ be an L_n -space. Observe that $(g \circ f) \times i_Z = (g \times i_Z) \circ (f \times i_Z)$. $(X \times Z, \mu_1, ..., \mu_n) \xrightarrow{f \times i_Z} (Y \times Z, \mu'_1, ..., \mu'_n) \xrightarrow{g \times i_Z} (W \times Z, \mu''_1, ..., \mu''_n)$

Vol.2 (1)

where $(X \times Z, \mu_1, ..., \mu_n), (Y \times Z, \mu'_1, ..., \mu'_n) \& (W \times Z, \mu''_1, ..., \mu''_n)$ are the L_n -product spaces of $[(X, \tau_1, \tau_2, ..., \tau_n) \& (Z, \eta_1, \eta_2, ..., \eta_n)], [(Y, \tau'_1, \tau'_2, ..., \tau'_n) \& (Z, \eta_1, \eta_2, ..., \eta_n)]$ respectively. Let F be μ''_1 -closed. Since f & g are L_n -proper & $L_n *$ -proper respectively. $\Rightarrow f \times i_Z \& g \times i_Z$ are L_n -closed & $L_n *$ -closed respectively. $\Rightarrow ((g \times i_Z) \circ (f \times i_Z))(F)$ is an L_n -closed set in $W \times Z$ by (2.4) $\Rightarrow (g \times i_Z) \circ (f \times i_Z)$ is an L_n -closed function by (2.4) $\Rightarrow (g \circ f) \times i_Z$ is an L_n -closed function. $\Rightarrow g \circ f$ is an L_n -proper function.

g is an L_n – continuous function.

Let $(Z, \eta_1, \eta_2, ..., \eta_n)$ be an L_n -space, to prove that $(g \times i_Z)$ is L_n -closed. $(g \circ f) \times i_z = (g \times i_z) \circ (f \times i_z)$ Observe that $(X \times Z, \mu_1, \dots, \mu_n) \xrightarrow{J \times i_Z} (Y \times Z, \mu'_1, \dots, \mu'_n) \xrightarrow{g \times i_Z} (W \times Z, \mu''_1, \dots, \mu''_n)$ $(X \times Z, \mu_1, ..., \mu_n), (Y \times Z, \mu'_1, ..., \mu'_n) \& (W \times Z, \mu''_1, ..., \mu''_n)$ where are the L_n -product spaces of $[(X, \tau_1, \tau_2, ..., \tau_n) \& (Z, \eta_1, \eta_2, ..., \eta_n)]$ $[(Y, \tau'_1, \tau'_2, ..., \tau'_n) \& (Z, \eta_1, \eta_2, ..., \eta_n)] \& [(W, \tau''_1, \tau''_2, ..., \tau''_n) \&$ $(Z,\eta_1,\eta_2,...,\eta_n)$] respectively. Since f is a surjective function. $\Rightarrow (f \times i_z)$ is a surjective function. a μ'_1 -closed set Let Α be in $Y \times Z$. To prove that

Let A be a μ'_1 -closed set in $Y \times Z$. To prove that $(g \times i_Z)(A) \in L_n - C(W \times Z)$. Since $(f \times i_Z)$ is a surjective function and $f: (X, \tau_1) \to (Y, \tau'_1)$ is a continuous

function $\Rightarrow (f \times i_Z)$ is a continuous function $\Rightarrow \exists B^c \in \mu_1 \ni A = (f \times i_Z)(B)$ by (2.1) Since $(g \circ f)$ is an L_n -proper function. $\Rightarrow [(g \circ f) \times i_Z](B) \in L_n - C(W \times Z)$. Since $[(g \circ f) \times i_Z](B) = (g \times i_Z)((f \times i_Z)(B))$ $= (g \times i_Z)(A)$. $\Rightarrow (g \times i_Z)(A) \in L_n - C(W \times Z) \Rightarrow g$ is an L_n -proper function.

(iv)

f is an L_n – continuous function.

Let $(Z, \eta_1, \eta_2, ..., \eta_n)$ be an L_n -space. To prove that $(f \times i_Z)$ is an L_n -closed function. Observe that $(g \circ f) \times i_Z = (g \times i_Z) \circ (f \times i_Z)$ $(X \times Z, \mu_1, ..., \mu_n) \xrightarrow{f \times i_Z} (Y \times Z, \mu'_1, ..., \mu'_n) \xrightarrow{g \times i_Z} (W \times Z, \mu''_1, ..., \mu''_n)$ where $(X \times Z, \mu_1, ..., \mu_n), (Y \times Z, \mu'_1, ..., \mu'_n) \& (W \times Z, \mu''_1, ..., \mu''_n)$ are the L_n -product spaces of $[(X, \tau_1, \tau_2, ..., \tau_n) \& (Z, \eta_1, \eta_2, ..., \eta_n)], [(Y, \tau'_1, \tau'_2, ..., \tau'_n)$

Vol.2 (1)

& $(Z, \eta_1, \eta_2, ..., \eta_n)$] & $[(W, \tau''_1, \tau''_2, ..., \tau''_n)$ & $(Z, \eta_1, \eta_2, ..., \eta_n)$] respectively. Since g is an injective function. $\Rightarrow (g \times i_z)$ is an injective function. Let A be a μ_1 -closed set in $X \times Z$. Since $(g \circ f)$ is an L_n -proper function $\Rightarrow (g \circ f) \times i_z$ is an L_n -closed function $\Rightarrow [(g \times i_z) \circ (f \times i_z)](A) \in L_n - C(W \times Z)$. Since $(g \times i_z)$ is an injective function $\Rightarrow (f \times i_z)(A) = (g \times i_z)^{-1}[(g \times i_z) \circ (f \times i_z)](A)$. Since g is an L_n^* -continuous function. $\Rightarrow (g \times i_z)$ is L_n^* -continuous. $\Rightarrow (f \times i_z)(A) = (g \times i_z)^{-1}[(g \times i_z) \circ (f \times i_z)](A) \in L_n - C(Y \times Z)$.

 $\Rightarrow (f \times i_z)$ is an L_n -closed function. $\Rightarrow f$ is an L_n -proper function.

<u>3.7 Proposition</u>: Let $f_1: X_1 \to X_2$ & $f_2: X_2 \to X_2$ be L_n -proper and L_n *-proper functions respectively. Then $f_1 \times f_2: X_1 \times X_2 \to Y_1 \times Y_2$ is an L_n -proper function.

Proof:

To prove that $f_1 \times f_2$ is L_n - continuous function. Since $f_1 \& f_2$ are L_n - continuous functions. $\Rightarrow f_1 \times f_2$ is L_n - continuous function.

To prove that $(f_1 \times f_2 \times i_Z)$ is an L_n -closed function, let Z be an L_n -space. Consider

$$X_1 \times X_2 \times Z \xrightarrow{f_1 \times i_{x_2} \times i_z} Y_1 \times X_2 \times Z \xrightarrow{i_{Y_1} \times f_2 \times i_z} Y_1 \times Y_2 \times Z$$
$$(f_1 \times f_2 \times i_z) = (i_{Y_1} \times f_2 \times i_z) \circ (f_1 \times i_{x_2} \times i_z)$$

Since f_1 is an L_n -proper function. $\Rightarrow (f_1 \times i_{X_2} \times i_Z) = f_1 \times i_{(X_2 \times Z)}$ is an L_n -closed function. Since f_2 is an L_n^* -proper function. $\Rightarrow (i_{Y_1} \times f_2 \times i_Z)$ is an L_n^* -closed function. $\Rightarrow (f_1 \times f_2 \times i_Z) = (i_{Y_1} \times f_2 \times i_Z) \circ (f_1 \times i_{X_2} \times i_Z)$ is an L_n -closed function by (2.4). $\Rightarrow f_1 \times f_2$ is an L_n -proper function.

References:

- Bourbaki, N.; Elements of Mathematics, <u>General Topology</u>, Chapters 1-4, Springer Verlag Berlin, Heielberg, New Yourk London, Paris, Tokyo, 2nd Eddition 1989.
- [2] Gemignoni, M. C.; *Elementary Topology*, Addison Wesley Publishing Company, Inc. 1972.
- [3] Kelley, J. C., *Bitopological Spaces*, Proch Lodon Math. 13 (1963) 71-89.
- [4] Willard, S.; General Topology, Addison-wesley Publishing Company, Inc. 1970.

الخلاصة

في هذا البحث عُرف مفهوم الدوال الســــديــدة مــن النمــط – L_n بالاعتمـــــاد علــى مفهـــوم L-space الذي قدمـــــه (العالم .Kelley, J.C ســــدر [3]) وعلــى مفهـــــوم الدوال السديدة الذي قدمـــــه العالم (.Bourbaki, N) في المصـــدر [1]) .كذلك أســــتخدم هذا المفهوم لدراســــة بعض المبرهنات التي تتعلق بمفهـوم الدوال السديدة.