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Introduction: 
     The homotopy perturbation method proposed by Ji-Huan He[7,8,9]. Many authers try to improved this 

method to solve various nonlinear problems [2,5, 10,11,12,13]. HPM yields a very rapid convergence of the 

solution series and some time one iteration leads to high accuracy of the solution.  

      Fokker-Planck equation (FPE), first applied to investigate the Brownian motion of particles, is now 

largely employed in physics, engineering, biology and chemistry. Biazar and his co-authors [6] solved linear 

and nonlinear Fokker-Planck equation by using variational iteration method, while Tatari and his co-authors 

[11] used adomian decomposition method for this equation. 

      In this paper, we apply the homotopy perturbation method (HPM) for solve linear and nonlinear FPEs.  

 

1- Fokker-Planck equation: 

        The general form of Fokker-Planck equation (FPE) for variables  and  is as follows [6]: 

 
 

With the following initial condition: 

  
 

Here  is called the diffusion coefficient and  the drift coefficient. The diffusion and drift 

coefficients can also be functions of  and , i.e. 
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        Eq. (1) is an equation for the motion of the concentration field . Mathematically, this equation is 

a linear second-order partial differential equation of parabolic type. Eq. (1) is also called forward 

Kolmogorov equation. The backward Kolmogorov equation is written in the following form: 

 

 

 

         A generalized form of Eq. (1) to  variables  can be written as follows: 

 

 

With the following initial condition 

 

 
  

     Generally in Eq.(4) drift vector  and diffusion tensor  depend on  variables . 

     There is a more general form of FPE, which is nonlinear FPE. Nonlinear FPE has important applications 

in various areas such as plasma physics, surface physics, population dynamic, biophysics, engineering, 

neurosciences, nonlinear hydrodynamics, polymer physics, laser physics, pattern formation, psychology and 

marketing. The nonlinear FPE for one variable is in the following form: 

 

 

 

Eq. (5) for  variables  is in the following form: 

 

 

 

      The paper is organized as follows: in the next section, the Homotopy perturbation method is introduced. 

The application of Homotopy perturbation method for solving Fokker-Planck equation is introduced in 

section 3. The application of the problem is obtained in section 4. In section 5, six examples explain the 

application. Section 6 ends this paper in conclusion.  

 

2-Homotopy perturbation method: 
       To illustrate the HPM, Ji-Huan He considered the following nonlinear differential equation [5, 8]: 

                                                                                                                       

With boundary conditions 
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Where  is a general differential operator,  is a boundary operator,  is a known analytic function,  

is a boundary of the domain . 

      The operator can be generally divided in to two parts  and ,where  is linear, and   is 

nonlinear, therefore equation(7) can be rewritten as follows: 

 

                                                                                                                  

      The homotopy technique which is constructed by He [7],  ℝ satisfied:   

                                                            

                                                          

Where   and  that is called homotopy parameter, and  is an initial approximation of (9), 

which is satisfies the boundary conditions. Obviously, from equation (10), we have: 

                                                                                                                     

                                                                                                                 

and the changing process of  from 0 to 1, is just that of  from  to . In topology, this is 

called deformation, and   and  are called homotopic. 

       The embedding parameter  as a "small parameter" is used and assume that the solution of 

equation (9) can be written as a power series in : 

                                                                                                                      

Setting  results in the approximate solution of equation (7): 

                                                                                                      

     The series (14) is convergent for most cases; however, the convergent rate depends upon the nonlinear 

operator  (the following opinions are suggested by He [7]) 

(1)The second derivative of with respect to  must be small because the parameter may be relatively 

large, i.e., . 

(2)The norm of  must be smaller than one so that the series converges. 

 
Theorem [5] 

    Suppose that  and  be Banach space and  is a contraction nonlinear mapping, that is  

 

Which according to Banach's fixed point theorem, having the fixed point , that is . 

    The sequence generated by the homotopy perturbation method will be regarded as  
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and suppose that   where then we have the following 

statements: 

(i)  

(ii) . 

(iii)  

Proof: (i) By the induction method on , for we have  

 

Assume that  as an induction hypothesis, then 

 

(ii) Using (i), we have 

 

(iii) Because of , and , we drive  

, that is . 

    

3- Application of homotopy perturbation method:  
 
         1- At first, we construct a homotopy perturbation method for equation (1) as follows: 

 

 

or 

 

         By substituting (13) into (16) and equating the coefficients of like terms with the identical powers 

of , we obtain:  
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  By integration of the both sides of the equations, we obtain the following multiple solutions: 

 

 

 

 

2- We construct a homotopy perturbation method for equation (2) as follows: 

 

Or 

 

         By substituting (13) into (24) and equating the coefficients of like terms with the identical powers 

of , we obtain:  

 

 

                                                                                                                                                              

                                                                             

                            (26)   
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                      (28)   

 

By integration of the both sides of the equations, we obtain the following multiple solutions: 

 

 

 

 

 

3- We construct a homotopy perturbation method for equation (3) as follows: 

 

or 

 

      By substituting (13) into (32) and equating the coefficients of like terms with the identical powers of , 

we obtain:  

 

 

 

 

 

By integration of the both sides of the equations, we obtain the following multiple solutions: 
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4- We construct a homotopy perturbation method for equation (4) as follows: 

 

or 

 

      By substituting (13) into (40) and equating the coefficients of like terms with the identical powers of , 

we obtain:  
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By integration of the both sides of the equations, we obtain the following multiple solutions: 
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5- We construct a homotopy perturbation method for equation (5) as follows: 

 

or 

 

         By substituting (13) into (47) and equating the coefficients of like terms with the identical powers 

of , we obtain:  

 

 

 

                             (49)      

   

 

                            (50) 

 

 

               (51) 

  By integration of the both sides of the equations, we obtain the following multiple solutions: 
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6- We construct a homotopy perturbation method for equation (6) as follows: 

 

or 

 

      By substituting (13) into (40) and equating the coefficients of like terms with the identical powers of , 

we obtain:  
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By integration of the both sides of the equations, we obtain the following multiple solutions: 
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Such that so  

The approximate solution is: 

 

 
4-Examples:  
 

Example 1  

    Consider Eq.(1) with the following initial condition: 

 

    Let in Eq.(1) 

 

 

    Assuming as an initial approximation that satisfies the initial condition, from Eq.(21) and 

substituting equations (63) and (64) into Eq.(22) we obtain 

 

 

 

 

So that the  solution of Eq.(1) will be as follows: 

 

 

Example 2  

      In this example we consider Eq.(2) with the initial condition: 

 

      Let the drift and diffusion coefficient in Eq.(2) be in the following form: 
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     Selecting , as an initial approximation in Eq.(29), and substituting equations (68) and 

(69) into Eq.(30) we obtain the following successive approximations: 

 

 

 

 

 

    Therefore, 

 

 That leads to the following solution: 

. 

 

Example 3  
     Consider the backward Kolmogorov Eq.(3) and let the initial condition be given by 

 

     Also, we consider 

 

 

     Assuming  in Eq.(37) and substituting equations (71) and (72) into Eq.(38) we obtain 

the following successive approximations: 

 

 

 

 

 

  Thus, we obtain  
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which is equivalent to the following closed form of the solution: 

. 

 

Example 4  

    Consider Eq.(4), with the initial condition 

 

     Also let 

 

 

       Consider  as the zeroth approximation, using this selection in Eq.(44) and substituting 

equations (71) and (72) into Eq.(45) we obtain the following successive approximation: 

 

 

 

 

 

    Thus, the solution of Eq.(4) will be as the follows: 

 

 which is equivalent to the following closed form of the solution: 

. 

 

Example 5  

      Consider the nonlinear FPE (5) such that 

 

 

 

       Substituting these values in Eq.(53) and considering  by the Eq.(52) we have  
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     Thus, the solution will be as follows: 

 

Example 6  

    Consider the generlized nonlinear Eq.(6), with the initial condition 

 

     Also let 

 

 

     By substitute these equations in Eq.(60) and selecting , from Eq.(59), we drive the 

following results: 

 

 

 

 

 
     Therefore, the solution of Eq.(6) is in the following form: 

 

      The solutions obtained in examples (1-5) are the same those obtained by ADM [11] and VIM [6], and 

the solution obtained in example (6) are the same this obtained by VIM [6].   

Conclusion: 
         We solved the Fokker-Planck equation by homotopy perturbation method. We notice from the 

examples that the HPM is very accurate method since the results of this method are the same results of 



 

 
 

911 

 

J.Thi-Qar Sci.                            Vol.3 (2)                               Feb./2012 

 

ADM and VIM. So that the HPM is remarkably effective for solve the Fokker-Planck equation. In our work, 

we use the Maple13 to calculate the results which are obtained from the iteration method HPM.     
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 :الملخص

بلانك وبعض المعادلات المشابهة لها باستخدام طريقة اضطراب الهوموتوبي. بعض -في هذا البحث, سنقوم بحل معادلة فوكر          
 الامثلة حلت  باستخدام  طريقة اضطراب الهوموتوبي لبيان بساطة وقابلية تلك الطريقة . 

 


