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Abstract

In the most of applications of regession ,no explanatory orthogonal will existbut it is
connected too strongly to the extennt that the results would be far from being exquisite. So its
too difficult to expect the effects upon the individual variabls within the range of regression
equation .Also the values estimated here concerning the factors could be slight in data. The
non-orthogonality is said to be the problem of multicolinearity going side by side with the
factors of unstable,estimated regression. This case,however,comes out from the strong linear
relation between explanatory variants.To solve this problem, a method of the pricipal
components is used;that which depends upon the fact that each linear type mihgt be
reformulated as to the group of the orthogonal,explanatory variables; these in turn can be
obtained as linearstructures for the orthogonal (basic) explanatory variables through the
Barr'let norm,as a test formula, as away to know whetherthe roots possess a sufficient quality
for a linear relation As for the practical side,or applied of this research concerning the special
data of the consumption of the individual in USA as dependent variable and wage income,non
wage-non farm income,farm income are explanatory variables.the characters rootindicated to
the collinearity ; the result is that the four variables can be treated as two factors only ,a

ststistical programme is here used that is (SPSS,Minitab) for the analysis of the data.

Introduction

A regression model that involves more than repressor variable is called a multiple
regression model. In other words it is a linear relationship between a dependent variable (Y) and
two or more independent (explanatory) (X) therefore used as approximating functions. That is

true functional relationship between Y and X, X, ,....... , X is unknown, but over
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certain ranges of the repressors variables, the linear regression model is an adequate
approximation to the true unknown function .If the model fits the data will, The R? value will be
high ,and the corresponding P value will be low (P value is the observed significance level at
which the null hypothesis is rejected). in addition , the multiple regressions also report an
individual P value for each independent variable .A low P value here means that this particular
independent variable significantly improves the fit of the model .1t is calculated by comparing
the goodness-of-fit of the entire model to the goodness-of-fit when that independent variable is
omitted . If the fit is much worse when that variable is omitted from the model, the P value will
be low, telling that the variable has a significant impact on the model.[1]

Consider the following multiple regression models

Y=XB+s (1)

Where Y is an (nx1) vector of responses,X is an (nxp)matrix of the regressor variables,p is (px1)
vector of unknown constant; and ¢ is an (nx1) vector of random errors,with &, ~ N(0,o?).it will

be convenient to assume that the regressor variables are standardized.consequently , X X is
(pxp)matrix of correlations between the regessors and X'y is (px1) vector of correlation

between the regessors and the response. Let the j™ column of X matrix be denoted by X80

that X =[X;, Xy ,XpJ .Thus X contains the n level of the regressor variable.formally

multicollinearity can be defined as the linear dependence of the columns of X.the vectors are
linearly dependent if there is a set of constants A, 4,,......... , 4, not all zero such that

kK
daX;=0 )
j=1

If equation (2) holds exactly for a subset of the columns of X then the rank of the X X matrix is
less than p and (X X)™ does not exist [4]

Multicollinearity

The term Multicollinearity refers to a situation in which there is an exact (or
nearly exact) linear relation among two or more of the input variables, exact relations usually
arise by mistake or lack of understanding.
If the goal is simply to predict Y for a set of X variables, the multicollinearity is not a problem.
The predictions will still be accurate, and the overall R? (or adjusted R? quantifies how will the
model predicts the Y values. However, if the goal is to understand how the various effect Y,
then multicollinearity is a big problem? One problem is that the individual P values can be
misleading (a P value can be high, even though the variable is important) .The second problem is
that the confidence intervals on the regression coefficient will be very wide. The confidence
intervals may even include zero, which means one cannot even be confident whether an increase
in the X value is associated with in increase, or a decrease, in Y. Because the confidence
intervals are so wide ,excluding a subject (or adding a new one) can change the coefficients
dramatically and may even change their signs.
There are four primary sources of multicollinearity

1- The data collection method employed

2- Constraints on the model or in the population.
3- Model specification

4- An over defined model
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The data collection method can lead to multicollinearity problems when the analyst samples only
a subspace of the region of the repressors defined in equation (2) [7]

The method of principal components
The aim of the method of the principal components is the construction out of a set of variable, X;

s, =1, 2, , k of new variables Z; called principal components, which are linear combinations
of the X s.

2y = Xy 8, Xy +oe +a, X, , t=1,2...n

Ly =X, A, X, Foee, +a,, X

Ly =ay Xy 8, X, +os +a, X 3)

Here (a's) are called (loadings) which principal components are chosen, so constructed principal
components satisfy two conditions; [3]
1- The principal components are uncorrelated.
2- The first principal component Z; absorbs and accounts for the maximum
Possible proportion of the total variation in the set of all X; s,
The second principal component absorbs the maximum of the remaining variation in the X; s
(after allowing for the variation accounted for the first principal component ) and so on.
Test for the significance of the loadings
The loadings are in fact similar to correlation coefficients. This test does not take into
account the number of variables, X s in the set ,and the order of extraction of the principal
components .Burt and Banks [1947] have suggested the following adjustment to the standard
error of the correlation coefficient in order to obtain the standard errors of the loadings [2]
s(a;) =[s(ry )k 7k +1- nv: o 4)
Where
K=number of Xs in the set
L=subscript of Z, i.e. the order of its extraction (the position of Z in the extraction
Process). The .Burt and Banks fomula, clearly takes into account both the number of X's and
the order of extraction of Z's
Barlett's Criteria for the number of principal components to be extracted
Assume the latent roots are computed for k variables A1, A,... Ak and the first r roots
A1, Ao... A (for r<k) seem both sufficiently large and sufficiently different to be retained. The
question then whether the remaining (k-r) roots are sufficiently alike for one to conclude that the
associated Z's should be retained in the analysis .Bartlett [1954] has suggested that the quantity

2 =0 Ay Ay A) (Aigs Ay =0T (5)
Has y?-distribution (approximately) with v=1/2(k —r —1)(k — r — 2) degrees of freedoms. The
null hypothesis has assumed equality of the excluded latent roots, i.e.
Ho=4,=4,=-.=4 (6)
If ;(Cz > Xa-av We reject the null hypothesis, that is we accept that the excluded latent roots are

not equal; hence, we should include additional Z's in our analysis [6]
Principal component regression
Let the model under consideration be,

147



J. Thi-Qar Sci. Vol.2 (2 April/2010

Y=Xf+¢
Let X X =TAT , where A =diag(4,4,,....A)  coeeerenns (7)

A P x P diagonal matrix of the eigenvalues is X X
In addition, T is a P x P orthogonal matrix whose columns are the eigenvectors associated with
M, Ao... A . Then the above model can be written as

Y =XTT B+¢, TT =1, Is the identity matrix
=Zo+¢ ,  Where

Z=XT ,a=TB (8)
Where T= (3.1, az .....,a3)

ZZ=TX'XT=TTATT=A ... (10)
The columns of Z, which define a new set of orthogonal repressors
,such as Z=[Z;,Z,,....... 73] are referred to as principal components [5]
The least square estimator of o is

a=(2'2)*zY=AN2Yy . (11)

And the covariance matrix of oAz is
V(@) =o2(ZZ)" = 62N (12
Thus a small eigenvalues of X X means that the variance of the corresponding regression

k_ _k ‘
coefficient will be large. SinceZ Z :ZZZiZj = A. We often refer to the eigenvalues 4; as

i=1 j=1
the variance of the jth principal component. If all 4; equal to unity, the original regressors are
orthogonal, while if a 2, is exactly equal to zero, this implies a perfect linear relationship
between the original regressors. One or more A;near to zero implies that multicollinearity is

present.

The principal component regression approach combats multicollinearity by using less than the
full set of principal components in the model. To obtain the principal components estimator,
assume that the regressors are arranged in order of decreasing eigenvalues, 4, >4, >...> 4, >0

suppose that the last of these eigenvalues is approximately equal to zero.

In principal component regression the principal component corresponding to near zero
eigenvalues are removed from the analysis and least squares applied to the remaining
components. That is

p=Ta . (13)
Where aj=a,=...=axs=1 and Aks+l = Aks+2 = ...=ax =0
Thus the principal components estimator is

B=1Tlo1 o 2 ...... ors...00..0 . (14)
Application

The data are represented to the United States economy, where Y=consumption, X; =wage
income, X, =non-wage, non farm income, X3 =farm income.
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Table 1:
Y X1 XE XE-
628 4341 17.10 3.96
65.0 4644 18.65 548
639 44 35 17.09 437
675 4782 19.28 451
713 51.02 23.24 488
766 58.71 28.11 6.37
863 87,69 30.29 8.96
9.7 76.73 28.26 9.76
933 7591 2191 9.31
100.3 7162 3230 9.85
103.2 78.02 31.39 721
108.9 8357 35.61 7.39
108.5 90,59 37.58 7.98
1114 9547 3517 742
Table (2) Model Summary
Change Statistics
R Souare | Std. Errorof | Adjusted R,

Sin. F Change if2 fl FChange | Change | the Estimate | Souare | R.Sduare R hodel
000 10 3 37683 919 .05 96 494 Myl 50| 1
a Predictors: (Constant) #3, X2, X1
a DependentVariahle: ¥

Table(3) KMO and Bartlett's Test
833 | Kaiser-Meyer-Qlkin Measure of Sampling Ade
quacy.
62 868 | Approx. Chi-Sgquare Bartlett's Test of
BTt Sphericity
000 | Sig.
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Table(4) Coefficients(a)
Sig. t Standardized LInstandardized Model
Coefficients Coefficients
Beta Std. Errar B
0 2732 F.845 18.703 | (Constant)y | 1
241 1.219 385 a12 KETREA
ik 1.9649 534 d20 1418 [ X2
A1 381 054 1.400 A33 | K3

a DependentYariable: ¥

we see that coefficient of determination R? =91.9 % is highly significant but in contrast
all the f's are insignificant .the computation reveal that the cause of multicollinearity lies
mainly in the Intercorrelation between X ; and X; .now it has been proved that the data
are highly multicollinear.

The principal component analysis based correlation method yields the summary table ( 5

).

Table (5)

principal Component Analysis

Eigenanalysis of the Correlation Matrix

Eigenvalue Var(4,) 2.6636 0.2880 0.0484
Proportion 0.888 0.096 0.016
Cumulative %of variation  0.888 0.984 1.000

Variable PC1 PC2 PC3

X1 -0.598 0.253 0.760
X2 -0.583 0.514 -0.630
X3 -0.550 -0.820 -0.160

The three principal component are:

Z; =-0.598X ;- 0.583X , - 0.550X 3
Z,=0.253X ; + 0.514X - 0.820X 5
Z5=0.760X 1 - 0.630 X - 0.160X 3

If we retain all of these three component we will get the estimate similar to the OLS
estimates. table (5) shows the coefficient of correlation between the first principal Z; and
(x 1 X2 X3)are quite large , also the correlation between Z;and (x 1 X2 X 3)

But the relationships between Z3 and (x 1 X » X 3 )are not very strong . it means that the
first two principal components are sufficient to describe the maximum variation in X's we
see that all the coefficints (loadings) of the first principal component are significant.only
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third co-efficint of the second principal component is significant and not even a single co-
efficient of the third pricipal component is significant .

Conclusions

1- The principal components and there co-efficint (loadings ) are obtained by using
the correlation matrix of the regressors.All the loading of the third pricipal
component are insignificant,moreover,the correlation between orginal variable X's
(standardized) and  the third pricipal component are insignificant .we
therefore,exclude the third pricipal component from the analysis and retain only
the first two components.

2- We observe that the principal components regression technique provides the best
estimates of the coefficients of the population regression function ,in particular
when the sample data are suffering from multicollinearity .

3- If the original variables are uncorrelated then there is no use of the principal
components analysis.multicollinearity ,if present among the repressors, seriously
affect the property of minimum variance of the OLS estimates.

4- |If the purpose is just of the forecasting or prediction, then the existence of
multicollinearity dose not harm any more but if aim is to get the precise estimates.
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