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Introduction 

 

            A regression model that involves more than repressor variable is called a multiple 

regression model. In other words it is a linear relationship between a dependent variable (Y) and  

two or more independent (explanatory) (Xi) therefore used as approximating functions. That is 

true functional relationship between Y and kXXX ,.......,, 21   is unknown, but over 

Correction for multicollinearity between the explanatory variables 

to estimation by using the Principal component method 
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 Abstract 

 
In the most of applications of regession ,no explanatory orthogonal will exist,but it is 

connected too strongly to the extennt that the results would be far from being exquisite. So its 

too difficult to expect the effects upon the individual variabls within the range of regression 

equation .Also the values estimated here concerning the factors could be slight in data. The 

non-orthogonality is said to be the problem of multicolinearity going side by side with the 

factors of unstable,estimated regression. This case,however,comes out from the strong linear 

relation between explanatory variants.To solve this problem, a method of the pricipal 

components is used;that which depends upon the fact that each linear type mihgt be 

reformulated as to the group of the orthogonal,explanatory variables; these in turn can be 

obtained as linearstructures for the orthogonal (basic) explanatory variables through the 

Barr'let norm,as a test formula, as away to know whetherthe roots possess a sufficient quality 

for a linear relation As for the practical side,or applied of this research concerning the special 

data of the consumption of the individual in USA as dependent variable and wage income,non 

wage-non farm income,farm income are explanatory variables.the characters rootindicated to 

the collinearity ; the result is that the four variables can be treated as two factors only ,a 

ststistical programme is here used that is (SPSS,Minitab) for the analysis of the data. 
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certain ranges of the repressors variables, the linear regression model is an adequate 

approximation to the true unknown function .If the model fits the data will, The  R
2
 value will be 

high ,and the corresponding P value will be low (P value is the observed significance level at 

which the null hypothesis is rejected). in addition , the multiple regressions also report an 

individual P value for each independent variable .A low P value here means that this particular 

independent variable significantly improves the fit of the model .It is calculated by comparing 

the goodness-of-fit of the entire model to the  goodness-of-fit when that independent variable is 

omitted . If the fit is much worse when that variable is omitted from the model, the P value will 

be low, telling that the variable has a significant impact on the model.[1] 

Consider the following multiple regression models 

  XY                                                                            ………    (1) 

Where Y is an (n×1) vector of responses,X is an (n×p)matrix of the regressor variables,β is (p×1) 

vector of unknown constant; and ε is an (n×1) vector of random errors,with ),0( 2 Ni  .it will 

be convenient to assume that the regressor variables are standardized.consequently , XX '  is 

(p×p)matrix of correlations between the regessors and yX '  is (p×1) vector of correlation  

between the regessors and the response. Let the thj   column of X matrix be denoted by jX ,so 

that  pXXXX ,.......,, 21  .Thus jX contains the n level of the regressor variable.formally 

multicollinearity can be defined as the linear dependence of the columns of X.the vectors are 

linearly dependent if there is a set of constants  k ,,........., 21 , not all zero such that 

0
1




j

k

j

j X                                                                                   ……….  (2) 

If equation (2) holds exactly for a subset of the columns of X,then the rank of the XX '  matrix is 

less than p and  1' )( XX    does not exist   [4]                                                                      

 

Multicollinearity 

                           The term Multicollinearity refers to a situation in which there is an exact (or 

nearly exact) linear relation among two or more of the input variables, exact relations usually 

arise by mistake or lack of understanding.  

If the goal is simply to predict Y for a set of X variables, the multicollinearity is not a problem. 

The predictions will still be accurate, and the overall R
2
 (or adjusted R

2)
 quantifies how will the 

model predicts the Y values. However, if the goal is to understand how the various  effect Y, 

then multicollinearity is a big problem? One problem is that the individual P values can be 

misleading (a P value can be high, even though the variable is important) .The second problem is 

that the confidence intervals on the regression coefficient will be very wide. The confidence 

intervals may even include zero, which means one cannot even be confident whether an increase 

in the X value is associated with in increase, or a decrease, in Y. Because the  confidence 

intervals are so wide ,excluding a subject (or adding a new one) can change the coefficients 

dramatically and may even change their signs. 

There are four primary sources of   multicollinearity  

1- The data collection method employed  

2- Constraints on the model or in the population. 

3-  Model specification  

4- An over defined model                    
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The data collection method can lead to multicollinearity problems when the analyst samples only 

a subspace of the region of the repressors defined in equation (2) [7] 

 

The method of principal components 

The aim of the method of the principal components is the construction out of a set of variable, Xj 
'
s, j=1, 2,……, k of new variables Zi called  principal components, which are linear combinations 

of the Xj 
'
s. 

ktkttt XaXaXaZ 12211111 ..........           ,  t=1, 2… n     

ktkttt XaXaXaZ 22221122 ..........  

. 

. 

ktkktktkkt XaXaXaZ  ..........2211                                      …… ….    (3) 

 

Here (a's) are called (loadings) which principal components are chosen, so constructed principal 

components satisfy two conditions; [3] 

1- The principal components are uncorrelated. 

2- The first principal component Z1 absorbs and accounts for the maximum  

Possible proportion of the total variation in the set of all Xj 
'
s, 

The second principal component absorbs the maximum of the remaining variation in the Xj 
'
s 

(after allowing for the variation accounted for the first principal component ) and so on. 

Test for the significance of the loadings 

                The loadings are in fact similar to correlation coefficients. This test does not take into 

account the number of variables, X
'
 s  in the set ,and the order of extraction of the principal 

components .Burt and Banks [1947] have suggested the following adjustment to the standard 

error of the correlation coefficient in order to obtain the standard errors of the loadings  [2] 
2/1)/)](.([)( ilkkrsas xmxjij                                                                          …….(4) 

Where 

K=number of X
'
s in the set  

L=subscript of Z, i.e. the order of its extraction (the position of Z in the extraction     

       Process). The .Burt and Banks fomula, clearly takes into account both the number of X's and 

the order of extraction of Z
'
s  

Barlett's Criteria for the number of principal components to be extracted   

                  Assume the latent roots are computed for k variables λ1, λ2… λk and the first  r  roots  

λ1, λ2… λr (for r<k) seem both sufficiently large and  sufficiently different to be retained. The 

question then whether the remaining (k-r) roots are sufficiently alike for one to conclude that the 

associated Z
'
s should be retained in the analysis .Bartlett [1954] has suggested that the quantity  

      ]))/(,.....,(),......,,[( 21

1

21

2 rk

krrkrrrnc rknl 





                       ……..(5)  

Has 2 -distribution (approximately) with )2)(1(2/1  rkrkv degrees of freedoms. The 

null hypothesis has assumed equality of the excluded latent roots, i.e. 

rrrH    ....210                                                                                ……….(6)  

If ),1(

2

vc    we reject the null hypothesis, that is we accept that the excluded latent roots are 

not equal; hence, we should include additional Z
'
s in our analysis [6] 

Principal component regression  

Let the model under consideration be, 
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  XY  

Let '' TTXX    ,    where ),.....,( 21 kdiag                           ………..(7) 

A P × P diagonal matrix of the eigenvalues is XX '   

In addition, T is a P × P orthogonal matrix whose columns are the eigenvectors associated with 

λ1, λ2… λk  . Then the above model can be written as  

,'   XTTY     TT
'
 = I  , Is the identity matrix  

     = Zα + ε               ,      Where  

  Z = XT                    , α = T
'
 β                                                         ……….(8)        

 Where T= (a1, a2 ,….. ,a3)        

 Z
' 
Z=T

' 
X' X T =T

' 
T Λ T

' 
T =Λ                                                        ………(10) 

The columns of Z, which define a new set of orthogonal repressors 

, such as Z= [Z1 ,Z2 ,…….Z3 ] are referred to as principal components [5] 

The least square estimator of α is  

YZYZZZ '1'1' )( 


                                                                    ……..(11) 

And the covariance matrix of 


  is 

121'2 )()( 


  ZZV                                                                       …(12) 

Thus a small eigenvalues of XX ' means that the variance of the corresponding regression 

coefficient will be large. Since 
 

'

1 1

'

j

k

i

k

j

i ZZZZ . We often refer to the eigenvalues j  as 

the variance of the jth principal component. If all j  equal to unity, the original regressors are 

orthogonal, while if a  j  is exactly equal to zero, this implies a perfect linear relationship 

between the original regressors. One or more j near to zero implies that multicollinearity is 

present. 

The principal component regression approach combats multicollinearity by using less than the 

full set of principal components in the model. To obtain the principal components estimator, 

assume that the regressors are arranged in order of decreasing eigenvalues, 0...21  k  

suppose that the last of these eigenvalues is approximately equal to zero.  

In principal component regression the principal component corresponding to near zero  

eigenvalues are removed from the analysis and least squares applied to the remaining 

components. That is  

   


  T                                                                                                  ….(13) 

 Where      a1 = a2 = …= ak-s = 1    and       ak-s+1 = ak-s+2  = …=ak =0 

Thus the principal components estimator is   

    


  [α1
^ 
 α

^
 2  ……α

^
 k-s ….0 0…0]

'   
                                                  ……(14) 

 

Application 
       The data are represented to the United States economy, where Y=consumption, X1 =wage 

income, X2 =non-wage, non farm income, X3 =farm income.  
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Table (2 )     Model Summary 
 

Table(3)     KMO and Bartlett's Test 
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we see that coefficient of determination R
2
 =91.9 % is highly significant but in contrast 

all the β
’
s are insignificant .the computation reveal that the cause of multicollinearity lies 

mainly in the Intercorrelation between X 1 and X2 .now it has been proved that the data 

are highly multicollinear.  

The principal component analysis based correlation method yields the summary table ( 5  

) .  

 

Table (5)  

principal Component Analysis 

Eigenanalysis of the Correlation Matrix 

Eigenvalue Var( 1 )            2.6636    0.2880    0.0484 

Proportion                    0.888     0.096     0.016 

Cumulative %of variation      0.888     0.984     1.000 

 

Variable         PC1       PC2       PC3 

X1            -0.598     0.253     0.760 

X2            -0.583     0.514    -0.630 

X3            -0.550    -0.820    -0.160 

 

 

The three principal component are: 

Z1 =-0.598X
’
1- 0.583X

’
2 - 0.550X

’
3        

Z2 = 0.253X
’
1 + 0.514X

’
2 - 0.820X

’
3        

Z3 = 0.760X
’
1 - 0.630 X

’
2- 0.160X

’
3        

 

If we retain all of these three component we will get the estimate similar to the OLS 

estimates. table (5) shows the coefficient of correlation between the first principal Z1 and 

(x 1 , x 2  ,x 3 ) are quite large , also the correlation between Z2 and (x 1 , x 2  ,x 3 )  

But the relationships between Z3  and  (x 1 , x 2  ,x 3 )are not very strong . it means that the 

first two principal components are sufficient to describe the maximum variation in X
’
s we 

see that all the coefficints (loadings) of the first principal component are significant.only 

Table(4)                                              Coefficients(a)  
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third co-efficint of the second principal component is significant and not even a single co-

efficient  of the third pricipal component is significant .  

 

Conclusions 
1- The principal components and there co-efficint (loadings ) are obtained by using 

the correlation matrix of the regressors.All the loading of the third pricipal 

component are insignificant,moreover,the correlation between orginal variable X
’
s 

(standardized) and  the third pricipal component are insignificant .we 

therefore,exclude the third pricipal component from the analysis and retain only 

the first two components. 

2- We observe that the principal components regression technique provides the best 

estimates of the coefficients of the population regression function ,in particular 

when the sample data are suffering from multicollinearity . 

3- If the original variables are uncorrelated then there is no use of the principal 

components analysis.multicollinearity ,if present among the repressors, seriously 

affect the property of minimum variance of the OLS estimates. 

4- If the purpose is just of the forecasting or prediction, then the existence of   

multicollinearity dose not harm any more but if aim is to get the precise estimates. 
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