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Abstract

In this paper, the concepts of extension of a graph(digraph) and the extensible class of

graphs(digraphs) have been introduced. The class of connected graphs as well as the class of

Hamiltonian graphs which are extensible classes have also been proved. The classes of regular,

eulerian, bipartite and trees graphs which are not extensible classes have also been proved.

The concept of extensibility number has been introduced as well as the characterization of regular

graphs(digraphs) which have extensibility number k. Also the extensibility number of  eulerian

graphs(digraphs) has been characterized.

Key words: Joining graphs, Extension of graphs, Regular graphs, Reducibility, Contractibility, and

Connectivity.

1. Introduction

Kharat and Waphare [2001] introduced
the concept of reducibility number for posts in
Lattices Theory. Akram [2005] introduced
analogous concept in graph theory. In fact, he
studied the reducibility number for some classes
of graphs. Akram [2007] introduced the
contractibility number for some classes of
graphs. In this work, we introduced the concept
of extensibility number in graphs.

A graph G = (V(G),E(G)) consists of two
finite sets, V(G), the vertex set of the graph,

often denoted by just V , which is a nonempty set
of elements called vertices, and E(G), the edge
set of the graph, often denoted by just E,

which is a possibly empty set of elements
called edges, such that each edge ein Eis
assigned an unordered pair of vertices
(u,v)called the end vertices of e.The
number of vertices of G will be called the
order of G, and will usually be denoted by
p ; the number of edges of G will generally

be denoted byq. If for a graph G, p=1
then G is called trivial graph; if g =0 then

G is called a null graph. We shall usually
denote the edge corresponding to (v,w)
where (v and w are vertices of G ) by vw.

If e is an edge of G having end vertices
v,w then e is said to join the vertices v and

w, and these vertices are then said to be
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adjacent. In this case, we also say that e is
incident to v and w, and that w is a neighbor
of v. An independent set of vertices in G is a set
of vertices of  no two of which are adjacent.

Let v be a vertex of the graph . If v joined
to itself by an edge, such an edge is called loop.
The degree d(v) is the number of edges of
G incident with v, counting each loop twice. If
two (or more) edges of G have the same end
vertices then these edges are called parallel. A
graph is called simple if it has no loops and
parallel edges. We say that G is r —regular graph
if the degree of every vertex is r. A simple graph
in which every two vertices are adjacent is called
a complete graph; the complete graph with
p vertices is denoted by K . A bipartite graph is

one whose vertex set can be partitioned into two
subsets V, and V, in such away that each edge

joins a vertex of V, to a vertex of V,.

A walk in a graph cis a finite sequence
W =vyeV, e,..v, .6V, whose terms are
alternatively vertices and edges such that for
1<i<k, the edge ¢ has ends v, , and v,. The
vertex v, is called the origin of the walk W,
while v, is called the terminus of W . The vertices
V...V, In the above walk W are called internal
vertices. If the edges e,e,,..,e of the walk
W =veyv e,..v, v, are distinct then W is
called a trail and if v, =v,then W is called a
closed trail. If the vertices v,,v,,...,v, of the walk
W =vey, e,..v,_gVare distinct then W s
called a path. A path with n vertices will
sometime be denoted by P,. A closed trail in a

graph G is called a cycle if its origin and internal
vertices are distinct. A cycle with nvertices, will
sometime be denoted by C, and called n-cycle.

A trail in Gis called Euler trail if it includes
every edge of G . A tour of G is a closed walk of
G which includes every edge of G at least once.
An Euler tour of G is a tour which includes each
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edge exactly once. A graph G is called
Eulerian or Euler if it has an Euler tour.

A graph G is connected if there is a path
joining each pair of vertices of G; a graph
which is not connected is called
disconnected. A connected graph  which
contains no cycle is called a tree. A graph G
is Hamiltonian if it has a cycle which includes
every vertex of G . The vertex connectivity of
G, denoted «(G)is the smallest number of

vertices in G whose deletion from G leaves
either a disconnected graph or K,. A simple

graph G is called n-connected (where n>1)
if «(G)>n.

A directed graph D =(V, A) consists of
two finite sets V , the vertex set, a nonempty
set of elements called the vertices of D and
A, the arc set, a (possible empty) set of
elements called the arcs of D, such that each
arc a in A is assigned an ordered pair of
vertices (u,v).

If a is an arc, in the directed graph D,
with associated ordered pair of vertices
(u,v), then a issaid to join u to v, u is
called the origin or the initial vertex or the
tail of a, and v is called the terminus or the
terminal vertex or the head of a.

Given a digraph D we can obtain a graph
G from D by "removing all the arrows"
from the arcs. G is then called the
underlying graph of D.

Let D be a digraph. Then the directed
walk in D is a finite sequence
W =v,aV,..a,v,, Wwhose terms are

alternately vertices and arcs such that for
1=12,...,k, the arc a, has origin v,, and

terminus v, .

There are similar definitions for directed
trails, directed paths, directed cycles and
directed tours.

A vertex v of the digraph D is said to
reachable from a vertex u if there is a
directed path in D from u to v. A digraph
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D is said to be connected if its underlying
graph is connected. A digraph D is called
simple if, for any pair of vertices u and v of D,
there is at most one arc from u to v and there is
no arc from u to itself.

Let v be a vertex in the digraph D. The
indegree id(v) of v is the number of arcs of D

that have v as its head, i.e., the number of arcs
that "go to" v. Similarly, the outdegree od(v)

of v is the number of arcs of D that have v as
its tail, i.e., that "go out" of v.

Let D be a connected digraph. Then a
directed Euler trail in D is a directed open trail
of D containing all the arcs of D (once and
only once). A directed Euler tour of D is a
directed closed trail of D containing all the arcs
of D (once and only once). A digraph D
containing a directed Euler tour is called an
Euler digraph. A digraph D is called
k —regular if id(v) =od(v) =k for each vertex
v of D. A directed Hamiltonian cycle in a
digraph D is a directed cycle which includes
every vertex of D. If D contains such a cycle
then D is called Hamiltonian.

For the undefined concepts and
terminology we refer the reader to
Wilson[1978], Clark[1991], Harary[1969],
West[1999] and Tutte[1984].

2. Extensibility of Graphs.

In this section, we introduced the
concepts of extension of graphs, extensible
class of graphs and the extensibility number of
graph.  Further, we characterized the
extensibility number of regular and eulerian
graphs.

Definition 2.1(Clark[1991]): Let G, and G, be
two graphs with no vertex in common. We
define the join of G,and G, denoted by G, +G,
to be the graph with vertex set and edge set
given as follows:

V(Gl +Gz) =V(Gl) uv (Gz)i

E(G, +G,) =E(G)UE(G,)UJ
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Where  J ={xX, : X, eV(G)),%, eV(G,)}.
Thus J consists of edges which join every
vertex of G, to every vertex of G,.

Here we introduce
extension of a graph.
Definition 2.2: LetG be a nontrivial graph.
The extension of G is a graph denoted by
G+S obtained from G by adding a
nonempty set of independent verticesS such
that every vertex in S is adjacent to every
vertex in G exactly one. In such away S is
called extension set of G. In particular, if
S consists of a single element v, then v is
called extension vertex of G. The graph
G+S have vertex set and edge set as
follows:

V(G +S)=V(G)US,

E(G +S)=E(G )UJ
Where J ={xx, :x, €S,x, eV(G)}. Thus
J consists of edges which join every vertex
of S toevery vertex of G.
Definition 2.3: Let 3 be the class of graphs
with certain property. Then Jis called
extensible class, if for every graph Ge 3,

there exists an extension vertex v of G such
that G+ve 3.

the concept of

Proposition 2.4:
1. the class of connected graphs is
extensible class.
2. the class of Hamiltonian
extensible class.
Proof: (1) The proof follows from definition
2.2.
(2) Let G be any Hamiltonian graph with n
vertices, and C =v,v,...v,v, be the Hamiltonian

graphs is

cycle of G. Suppose that v, is extension vertex
of G. By definition 2.2, v, is adjacent to every
vertex in G exactly one. Then the cycle
C, =VoV,V,..V,V, is Hamiltonian in the graph
G +V,. Hence the graph G +v, is Hamiltonian
graph and the proof of (2) follows. o
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Proposition 2.5:
1. the class of trees is not extensible
class.
2. the class of bipartite graphs is not
extensible class.
3. the class of regular graphs is not
extensible class.
4. the class of eulerian graphs is not
extensible class.
Proof: (1) Let G be any tree. Then G is
connected graph without cycle. As the
extension vertex v of G is adjacent to every
vertex in G. Hence the graph G+v has a
cycle and the proof of (1) follows.
(2) Let G be a bipartite graph. Then the
vertex set V of G can be partitioned into
two subsets of vertices V, and V, such that

every edge in G join a vertex in V, to a
vertex in V,. Let v, be extension vertex of
G . By definition 2.2, v, is adjacent to all
the vertices in V, and V,. Then v, with any

two adjacent vertices in G form an odd
cycle. Then the graph G+v, contains an
odd cycle. But all the cycles in any bipartite
graph is even Harary[1969]. Hence G +v, is
not bipartite graph and the proof of (2)
follows.

(3) Let G be an r-regular graph with
nvertices which is not complete graph, and
v, be an extension vertex of G. By

definition 2.2, v, is adjacent to every vertex
in G exactly one. Thus d(v,)=n and
div,)=r+1 Vi=12..,n in the graph
G+v,. As G is not complete graph, then

r #n—1 which implies n=r+1. Hence the
graph G +V, is not regular and the proof of
(3) follows.

(4) Let G be an eulerian graph. Then G is
connected and every vertex in G has even
degree. By definition 2.2, the extension
vertex v, of G increase the degree of every
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vertex in G by 1. Therefore, the degree of
every vertex of G in the graph G+v, is

odd. Hence G +v, is not eulerian graph and
the proof of (4) follows. o

Now, let 3 be the class of graphs with
certain property, G e 3. The question is,
what is the smallest positive integer m such
that there exists an extension set S of G
with cardinality m for which G+S e 3. In
order to takle this question we define the
extensibility number.

Definition 2.6: let 3 be the class of graphs
with certain property, and Ge3J3 be a
nontrivial. The extensibility number of G
with respect to 3 is the smallest positive
integer m, if exists, such that there exists an
extension set S of G with cardinality m in
which the new graph G+S e 3. We write
m =ext(G). If such a number does not exist

for G, then we say the corresponding
extensibility number is 0.

One can see immediate, the class of graphs
3 is extensible class if and only if the
extensibility number of every graph G e 3 is
one. Further, the extensibility number for
each of the classes of trees and bipartite
graphs is oo.

Now, we characterize the extensibility
number for regular and eulerian graphs.

Theorem 2.7: Let R be the class of regular

graphs, ReR. Then egét(R) =1 if and only

if R is a complete or trivial graph.

Proof: Let Rbe an r-regular graph with
number of vertices n.

Suppose that eggt(R)zl. By definition 2.6,

there exists an extension set of R with single
element v, such that R+v, e®R. By
definition 2.2, v, is adjacent to every vertex
in Rexactly one. That is d(v,)=n and v,

increase the degree of every vertex in R by 1.
Then the degree of every vertex of R in the
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graph R+v, is r+1. Asthe graph R+v, is

regular, we must have n=r+1. If r=0,

then n=1and R is a trivial graph, otherwise
r=n-1and R isacomplete graph.

Conversely, if R is trivial graph, then it

Is not difficult to see that eggt(R) =1.

Suppose that R is a complete graph with
number of vertices n. Then R is regular
graph with regularity degree n-1. We
prove that eg‘gt(R):l. Let v, be a vertex

different from the vertices of R and join it
to every vertex in R exactly one. Then
d(vy)=n and v, increase the degree of
every vertex in Rby 1. As the degree of
every vertex in R is n—1, then the degree
of every vertex in R after joining v, is

n—1+1=n. Thus the new graph R+v, is
n-regular graph. As such v, is extension

vertex of R with respect to R. Hence
eggt(R) =1.0

Theorem 2.8: Let R be the class of regular
graphs, R be an r-regular graph with n
vertices in R. Then eét(R) =k ifand only if

k is the smallest number of vertices and
R has regularity degree r =n—K.

Proof: Let R be an r-regular graph with n
vertices.

Suppose that eggt(R) =k . Then by definition

2.6, there exists an extension set
S ={v,,v,,...,v, } of R and k is the smallest

cardinality of S such that the graph
R+SeR. By definition 22, S is
independent set of vertices and every vertex
in S is adjacent to every vertex in R exactly
one. Thus the degree of every vertex of S in
the graph R+S is n. That is
d(v,)=n,d(v,) =n,..,d(v,)=n, and the
degree of every vertex in R in the graph
R+S is r+k. As R+S is regular graph,
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then we must have n=r+k which implies
r=n-k.

Conversely, suppose that k is the
smallest number of vertices and R has
regularity degree r=n—k. We prove that
egét(R) =k.Let S={v,v,,..,v, } be aset of

independent vertices with cardinality k and
vertices different from the vertices of R.
Join every vertex of S to every vertex in R
exactly one. Then we get that the degree of
every vertex in S in the graph R+S is n.
That is d(v,)=d(v,)=...=d(v,)=n and
the degree of every vertex of R in the graph
R+S is r+k. By assumption r=n—Kk,
this implies that the degree of every vertex of
R inthegraph R+S is n—k+k=n.
Thus the graph R+S is n-regular graph.
That is R+S eR. As such S is extension
set of R with respect toR. Hence
e?ét(R) <k.

Suppose that eggt(R) <k . Then there exists an

extension set h={a,a,,.,a}of Rwith

cardinality 1<k such that R+heR. By
similar argument to part (1) above, we get
that the degree of every vertex of h in the
graph R+h is n. That is
d(a,)=d(a,)=...=d(a)=n and  the
degree of every vertex of R in the graph
R+h is r+l. As R+h is regular graph,
we must have n=r+I| which implies
r=n-1 with I<k a contradiction to our

assumption that r=n-k and k is the
smallest number of vertices. Hence
e>ét(R)=k.u

Theorem 2.9: Let ¢ be the class of eulerian
graphs, and G e €. Then

G _{ 2 if theorder of G iseven
e;(t( )= oo if theorder of G is odd

Proof: Let ¢ be the class of eulerian graphs,
and G e¢. Then G is connected graph and
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the degree of every vertex in G is even
Harary[1969].

Suppose that G has even order.

Let S={v,,v,} be an independent set of
two vertices which are different from the
vertices of G. Join every vertex of S to
every vertex of G exactly one. Then, as the
order of G is even, then every vertex of S
in the graph G+S has a degree even, and
since S consists of two vertices, then the
degree of every vertex of G in the graph
G+S increase by 2. Thus the degree of
every vertex in the graph G +S s even.

It is easy to prove that the graph G+S is
connected. Hence the graph G+S is
eulerian. As such S is extension set of G

with respect to &. Hence ext(G) < 2.
&

Suppose that ext(G) = 2. Then there exists
&

an extension vertex v, of G such that
G+v, € ¢ which is impossible as in the
graph G +v, every vertex in G has a degree
odd. Then G+v, ¢ ¢ and e?g(t(G) #1. Hence

ext(G) =2.

&
Now, if G has odd order. Then every
extension vertex of G has a degree odd.
Thus for any extension set h of G, the
graph G+h ¢ &. Hence, by definition 2.6,
ext(G) =o0. O
&

3. Extensibility of Digraphs.

In this section, we introduced the
concepts of extension of digraphs, extensible
class

of digraphs and the extensibility number of
digraph. Further, we characterized the

extensibility number of regular and eulerian
digraphs.

Here we introduce
extension of a digraph.

the concept

of
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Definition 3.1: Let D be a nontrivial
digraph. The extension of D is a digraph
denoted by D+S obtained from D by
adding a nonempty set of independent
vertices S such that every vertex in S is
adjacent or adjacent by every vertex in D
but not both . In such away S is called
extension set of D. In particular, if
S consists of a single element v, then v is
called extension vertex of D.

The definition of extensible class of
digraphs is analogous to that in definition
2.3, only replace every graph G by a
digraph D.

Proposition 3.2:
1. the class of connected digraphs is
extensible class.
2. the class of Hamiltonian digraphs is
extensible class.
The proof is similar to the proof
proposition 2.4. O

of

Proposition 3.3:
1. the class of regular digraphs is not
extensible class.
2. the class of eulerian digraphs is not
extensible class.
The proof is similar to the proof of
proposition 2.5 part (3) and (4) respectively.
O

The definition of extensibility number of
digraph is analogous to that in definition 2.6
only replace every graph G by a digraph D
as following.

Definition 3.4: let 3 be the class of digraphs
with certain property, and DeJ be a
nontrivial. The extensibility number of D
with respect to 3 is the smallest positive
integer m, if exists, such that there exists an
extension set S of D with cardinality m in
which the new digraph D+ S € 3. We write
m = ext(D). If such a number does not exist
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for D, then we say the corresponding
extensibility number is oo.

Theorem 3.5: Let R be the class of regular
digraphs, D be an r-regular digraph with
even number of vertices n in K. Then
eét(D) =k if and only if k is the smallest

number of vertices and D has regularity
degree r =1k,

Proof: Let D be an r-regular digraph with
even number of vertices n.
Suppose that eggt(D) =k . Then by definition

3.4, there exists an extension set
S={v,,v,,..v,} of D and k is the
smallest cardinality of S such that the
digraph D+ S € R. By definition 3.1, S is
independent set of vertices and every vertex
in S is adjacent or adjacent by but not both
every vertex in D. As D+S s regular
digraph and D has even order n, then every
vertex of S in the digraph D+S has
indegree 5 and outdegree %. That is
id(v;) =od(v;) =%, id(v,) =o0d(v,) =7,

, id (v, ) =od(v,)=1%.

Also every vertex of D in the digraph
D+S has indegree r+% and outdegree
r+%. As D+S is regular digraph, then we
must have 2 =r+% which implies r =~.

Conversely, suppose that k is the smallest
number of vertices and D has regularity

degree r =" We prove that eét(D) =K.

Let S={v,v,,.,v,} be a set of

independent vertices with cardinality k and
vertices different from the vertices of D. Let
every vertex of S is adjacent to § vertices

of D and adjacent by the remaining %

vertices of D such that every vertex in D
has indegree r +% and outdegree r+%. As
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r=2% then every vertex of D in the

digraph D+ S has indegree %5+ =2 and

2
outdegree 4. Then the digraph D+S is
regular. As such S is extension set of D

with respect to R . Hence eggt(D) <k.
If e>’§t(D) <k, then there exists an extension

set h={u,,u,,...,u,}of D with cardinality
I<k such that R+he®R. By similar
argument to part (1) above, we get that the
indegree of every vertex of h in the digraph
D+h is 4 and the outdegree is 5 . Also the

indegree of every vertex of D in the digraph
D+h is r+% and the outdegree is r++.

Since the digraph D+ h is regular, then we

must have 4 =r++% which implies r=2%!

with I <k a contradiction to our assumption
that r =% and k is the smallest number of

vertices. Hence ezgt(D) =k.o

Theorem 3.6: Let ¢ be the class of eulerian
digraphs, and D e&. Then

D _{ 2 if theorder of D is even
ezt( )= oo if theorder of D is odd

The proof is similar to the proof of theorem
29.0

3. Conclusions.

We conclude from this results that we
can extend some graphs by adding vertices
to get a new graphs with the same
properties of there original graphs. We
found some extensible classes of graphs
and digraphs also the extensibility numbers
for some graphs and digraphs.The authors
can check the extensibility number for
other kinds of graphs and digraphs.
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