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1. Introduction  
Kharat and Waphare [2001] introduced 

the concept of reducibility number for posts in 

Lattices Theory. Akram [2005] introduced 

analogous concept in graph theory. In fact, he 

studied the reducibility number for some classes 

of graphs. Akram [2007] introduced the 

contractibility number for some classes of 

graphs. In this work, we introduced the concept 

of extensibility number in graphs.  

 
A graph ))(),(( GEGVG  consists of  two  

finite sets, )(GV , the vertex set of the graph, 

often denoted by just V , which is a nonempty set 

of elements called  vertices, and E(G), the edge 

set of the graph, often denoted by just E ,  

 

 

 

 

 

 

which is a possibly empty set of elements 

called  edges, such that each edge e in E is 

assigned an unordered pair of vertices 

),( vu called the end vertices of e .The 

number of vertices of G  will be called the 

order of G , and will usually be denoted by 

p ; the number of edges of G will generally 

be denoted byq . If for a graph G , 1p  

then G is called trivial graph; if 0q  then 

G  is called a  null graph. We shall usually 

denote the edge corresponding to ),( wv  

where ( v  and w  are vertices of G ) by .vw  

If e  is an edge of G  having end vertices                 

     wv,  then e  is said to join the vertices v  and   

    w , and these vertices are then said to be 
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adjacent. In this case, we also say that e  is 

incident to v  and w , and that  w  is a neighbor 

of v . An independent set of vertices in G  is a set 

of vertices of G no two of which are adjacent.  

Let v  be a vertex of the graph G . If v  joined 

to itself by an edge, such an edge is called loop. 

The degree )(vd  is the number of edges of 

G incident with v , counting each loop twice. If 

two (or more) edges of G have the same end 

vertices then these edges are called parallel. A 

graph is called simple if it has no loops and 

parallel edges. We say that G  is r regular graph 

if the degree of every vertex is .r  A simple graph 

in which every two vertices are adjacent is called 

a complete graph; the complete graph with 

p vertices is denoted by pK . A bipartite  graph is 

one whose vertex set can be partitioned into two 

subsets 1V  and 2V  in such away that each edge 

joins a vertex of 1V  to a vertex of 2V .  

A walk in a graph G is a finite sequence 

kkk vevevevW 12110 ...  whose terms are 

alternatively vertices and edges such that for 

,1 ki   the edge ie  has ends 1iv  and iv . The 

vertex 0v is called the origin of the walk W , 

while kv  is called the terminus of W . The vertices 

11,..., kvv  in the above walk W are called internal 

vertices. If the edges keee ,...,, 21 of the walk 

kkk vevevevW 12110 ...   are distinct then W  is 

called a trail and if kvv 0 then  W  is called a 

closed trail. If the vertices kvvv ,...,, 10 of the walk 

kkk vevevevW 12110 ...  are distinct then W  is 

called a path. A path with n  vertices will 

sometime be denoted by nP . A closed trail in a 

graph G is called a cycle if its origin and internal 

vertices are distinct. A cycle with n vertices, will 

sometime be denoted by nC   and called n -cycle. 

A trail in G is called Euler trail if it includes 

every edge of G . A tour of G is a closed walk of 

G  which includes every edge of G  at least once. 

An Euler tour of G  is a tour which includes each 

       edge exactly once. A graph G  is called          

      Eulerian  or Euler if it has an Euler tour.     

 

     A graph G  is connected if there is a path 

joining each  pair of vertices of G ;  a graph 

which       is not connected is called 

disconnected. A connected graph  which 

contains no cycle is called a tree. A graph G  

is Hamiltonian if it has a cycle which includes 

every vertex of G . The vertex connectivity of 

G , denoted )(G is the smallest number of 

vertices in G whose deletion from G leaves 

either a disconnected  graph or 1K . A simple 

graph G  is called n -connected (where 1n ) 

if nG )( .  

     A directed graph ),( AVD  consists of 

two finite sets V , the vertex set, a nonempty 

set of elements called the vertices of D  and 

A , the arc set, a (possible empty) set of 

elements called the arcs of D , such that each 

arc a  in A  is assigned  an ordered pair of 

vertices ),( vu .  

     If  a  is an arc, in the directed graph D , 

with associated ordered pair of vertices 

),( vu , then a  is said to join  u  to v  , u  is 

called the origin or the initial vertex  or the 

tail of a , and v  is called the terminus  or the 

terminal  vertex  or the head of a . 

     Given a digraph D  we can obtain a graph 

G  from D  by "removing all the arrows" 

from the arcs.  G  is then called the 

underlying graph of D . 

     Let D  be a digraph. Then the directed 

walk  in D  is a finite sequence  

kk vavavW ...110 , whose terms are 

alternately vertices and arcs such that for 

,,...,2,1 ki   the arc ia  has origin 1iv  and 

terminus iv . 

There are similar definitions for directed 

trails, directed paths, directed cycles and 

directed tours.  

   A vertex v  of the digraph D  is said to  

 reachable from a vertex u  if there is a          

       directed path in D  from u  to v . A digraph 
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D  is said to be connected  if its underlying 

graph is connected. A digraph D  is called 

simple if, for any pair of vertices u  and v  of D , 

there is at most one arc from u  to v  and there is 

no arc from u  to itself. 

   Let v  be a vertex in the digraph D . The 

indegree )(vid  of v  is the number of arcs of D  

that have v  as its head, i.e., the number of arcs 

that "go to"  v . Similarly, the outdegree  )(vod  

of v  is the number of arcs of D  that have v  as 

its tail, i.e., that "go out" of v . 

    Let  D  be a connected digraph. Then a 

directed Euler trail  in D  is a directed open trail 

of D  containing all the arcs of D  (once and 

only once). A directed Euler tour  of D  is a 

directed closed trail of D  containing all the arcs 

of D  (once and only once). A digraph D  

containing a directed Euler tour is called an 

Euler digraph.  A digraph D  is called 

k regular if kvodvid  )()(  for each vertex 

v  of D . A directed Hamiltonian cycle  in a 

digraph D  is a directed cycle which includes 

every vertex of D . If D  contains  such a cycle 

then D  is called Hamiltonian.  

  For the undefined concepts and 

terminology we refer the reader to 

Wilson[1978],     Clark[1991], Harary[1969], 

West[1999] and Tutte[1984]. 

 

2. Extensibility of Graphs. 

      In this section, we introduced the 

concepts of  extension of graphs, extensible 

class of graphs and the extensibility number of 

graph. Further, we characterized the 

extensibility number of regular and eulerian 

graphs.  

  

Definition 2.1(Clark[1991]): Let 1G  and 2G  be 

two graphs with no vertex in common. We 

define the join of 1G and 2G  denoted by 21 GG   

to be the graph with vertex set and edge set 

given as follows: 

                         

                          

JGEGEGGE  )()()( 2121   

Where )}(),(:{ 221121 GVxGVxxxJ  . 

Thus J consists of edges which join every 

vertex of  1G  to every vertex of 2G .  

 

    Here we introduce the concept of 

extension of a graph. 

Definition 2.2: LetG  be a nontrivial graph. 

The extension of G  is a  graph denoted by 

SG   obtained from G  by adding a 

nonempty set of independent vertices S  such 

that every vertex in S  is adjacent to every 

vertex in G  exactly one. In such away S  is 

called extension set of G . In particular, if 

S consists of a single element v , then v  is 

called extension vertex of G . The graph 

SG   have vertex set and edge set as 

follows: 

              ,)()( SGVSGV   

             JGESGE )()(   

Where )}(,:{ 2121 GVxSxxxJ  . Thus 

J  consists of edges which join every vertex 

of S  to every vertex of G . 

Definition 2.3: Let   be the class of graphs 

with certain property. Then  is called 

extensible class, if for every graph G , 

there exists an extension vertex v  of G  such 

that  vG . 

 

Proposition 2.4: 

1. the class of connected graphs is 

extensible class. 

2. the class of Hamiltonian  graphs is 

extensible class. 

Proof: (1) The proof follows from definition 

2.2. 

(2) Let G  be any Hamiltonian graph with n  

vertices, and 121 ... vvvvC n  be the Hamiltonian 

cycle of G . Suppose that 0v  is extension vertex 

of G . By definition 2.2, 0v  is adjacent to every 

vertex in G  exactly one. Then the cycle 

02100 ... vvvvvC n  is Hamiltonian in the graph 

0vG  . Hence the graph 0vG    is Hamiltonian 

graph and the proof of (2) follows. □  

),()()( 2121 GVGVGGV 
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Proposition 2.5:  

1. the class of trees is not extensible 

class. 

2. the class of bipartite graphs is not 

extensible class. 

3. the class of regular graphs is not 

extensible class. 

4. the class of eulerian graphs is not 

extensible class. 

Proof: (1) Let G  be any tree. Then  G  is 

connected graph without cycle. As the 

extension vertex v  of G  is adjacent to every 

vertex in G . Hence the graph vG   has a 

cycle and the proof of (1) follows. 

(2) Let G  be a bipartite graph. Then the 

vertex set V  of  G  can be partitioned into 

two subsets of vertices 1V  and 2V  such that 

every edge in G  join a vertex in 1V  to a 

vertex in 2V . Let 0v  be extension vertex of 

G . By definition 2.2,  0v  is adjacent to all 

the vertices in 1V  and 2V . Then 0v  with any 

two adjacent vertices in G  form an odd 

cycle. Then the graph 0vG   contains  an 

odd cycle. But all the cycles in any bipartite 

graph is even Harary[1969]. Hence 0vG   is 

not bipartite graph and the proof of (2) 

follows. 

 (3) Let G  be an r-regular graph with 

n vertices which is not complete graph, and 

0v  be an extension vertex of G . By 

definition 2.2, 0v  is adjacent to every vertex 

in G  exactly one. Thus nvd )( 0  and 

1)(  rvd i  ni ,...,2,1  in the graph 

0vG  . As G  is not complete graph, then 

1 nr  which implies 1 rn . Hence the 

graph  0vG   is not regular and the proof of 

(3) follows. 

(4) Let G  be an eulerian graph. Then G   is 

connected and every vertex in G  has even 

degree. By definition 2.2, the extension 

vertex 0v  of G  increase the degree of  every 

vertex in G  by 1. Therefore, the degree of 

every vertex of G  in the graph 0vG   is 

odd. Hence 0vG   is not eulerian graph and 

the proof of (4) follows. □ 

 

     Now, let   be the class of graphs with 

certain property, G . The question is, 

what is the smallest positive integer m  such 

that there exists an extension set S  of G  

with cardinality m  for which  SG . In 

order to takle this question we define the 

extensibility number.  

Definition 2.6: let   be the class of graphs 

with certain property, and G  be a 

nontrivial. The extensibility number of G  

with respect to   is the smallest positive 

integer m , if exists, such that there exists an 

extension set S  of G  with cardinality m  in 

which the new graph   SG . We write 

)(Gextm


 . If such a number does not exist 

for G , then we say the corresponding 

extensibility number is  . 

    One can see immediate, the class of graphs 

  is extensible class if and only if the 

extensibility number of every graph G  is 

one. Further, the extensibility number for 

each of the classes of trees and bipartite 

graphs is  .  

 

    Now, we characterize the extensibility 

number for regular and eulerian graphs. 

Theorem 2.7:  Let   be the class of regular 

graphs, R . Then 1)( 


Rext  if and only 

if R  is a complete or trivial graph. 

Proof: Let R be an r-regular graph with 

number of vertices n . 

Suppose that 1)( 


Rext . By definition 2.6, 

there exists an extension set of R  with single 

element 0v  such that  0vR . By 

definition 2.2, 0v  is adjacent to every vertex 

in R exactly one. That is nvd )( 0  and 0v  

increase the degree of every vertex in R by 1. 

Then the degree of every vertex of R  in the 
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graph 0vR    is 1r . As the graph 0vR   is 

regular, we must have 1 rn . If 0r , 

then 1n  and R  is a trivial graph, otherwise  

1 nr  and R  is a complete graph.  

    Conversely, if R  is trivial graph, then it 

is not difficult to see that 1)( 


Rext . 

Suppose that R  is a complete graph with 

number of vertices n . Then R  is regular 

graph with regularity degree  1n . We 

prove that 1)( 


Rext . Let 0v  be a vertex 

different from the vertices of R  and join it 

to every vertex in R  exactly one. Then 

nvd )( 0  and 0v  increase the degree of 

every vertex in R by 1. As the degree of 

every vertex in R  is 1n , then the degree 

of every vertex in R  after joining 0v  is 

nn  11 . Thus the new graph 0vR   is 

n-regular graph. As such 0v  is extension 

vertex of R  with respect to  . Hence 

1)( 


Rext . □ 

 

Theorem 2.8: Let   be the class of regular 

graphs, R  be an r-regular graph with n  

vertices in  . Then kRext 


)(  if and only if 

k  is the smallest number of vertices and 

R has regularity degree knr  . 

Proof: Let R  be an r-regular graph with n  

vertices. 

Suppose that kRext 


)( . Then by definition 

2.6, there exists an extension set 

},...,,{ 21 kvvvS   of R  and k  is the smallest 

cardinality of S  such that the graph 

 SR . By definition 2.2, S  is 

independent set of vertices and every vertex 

in S  is adjacent to every vertex in R  exactly 

one. Thus the degree of every vertex of S  in 

the graph SR   is n . That is 

,)(,...,)(,)( 21 nvdnvdnvd k   and the 

degree of every vertex in R  in the graph 

SR   is kr  . As SR   is regular graph, 

then we must have krn   which implies 

knr  . 

     Conversely, suppose that k  is the 

smallest number of vertices and R  has 

regularity degree knr  . We prove that  

kRext 


)( . Let  },...,,{ 21 kvvvS   be a set of 

independent vertices with cardinality k  and 

vertices different from the vertices of R . 

Join every vertex of S  to every vertex in R  

exactly one. Then we get that the degree of 

every vertex in S  in the graph SR   is n . 

That is nvdvdvd k  )(...)()( 21  and 

the degree of every vertex of R  in the graph 

SR    is kr  . By assumption knr  , 

this implies that the degree of every vertex of 

R  in the graph SR     is  nkkn  . 

Thus the graph SR   is n-regular graph. 

That is  SR . As such S  is extension 

set of R  with respect to . Hence 

kRext 


)( . 

Suppose that )(Rext


< k . Then there exists an 

extension set },...,,{ 21 laaah  of R with 

cardinality l < k  such that  hR . By 

similar argument to part (1) above, we get 

that the degree of every vertex of h  in the 

graph hR   is n . That is 

nadadad l  )(...)()( 21  and the 

degree of every vertex of R  in the graph 

hR    is lr  . As hR   is regular graph, 

we must have lrn   which implies 

lnr   with l < k  a contradiction to our 

assumption that knr   and k  is the 

smallest number of vertices. Hence 

kRext 


)( .□ 

Theorem 2.9: Let ε  be the class of eulerian 

graphs, and εG . Then  

                     

)(
ε

Gext  even isG   oforder   theif    2

odd isG   oforder   theif  

 

  
   

Proof: Let   be the class of eulerian graphs, 

and G . Then G  is connected graph and 
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the degree of every vertex in G  is even 

Harary[1969].  

Suppose that G  has even order.  

Let },{ 21 vvS   be an  independent set of 

two vertices which are different from the 

vertices of G . Join every vertex of S  to 

every vertex of G  exactly one. Then, as the 

order of  G  is even, then every vertex of S  

in the graph SG   has a degree even, and 

since S  consists of two vertices, then the 

degree of every vertex of G  in the graph 

SG   increase by 2. Thus the degree of 

every vertex in the graph  SG   is even. 

It is easy to prove that the graph SG   is 

connected. Hence the graph SG   is 

eulerian. As such S  is extension set of G  

with respect to  . Hence 2)( Gext


.  

Suppose that 2)( Gext


. Then there exists 

an extension vertex 0v  of G  such that 

 0vG  which is impossible as in the 

graph 0vG   every vertex in G  has a degree 

odd. Then  0vG  and 1)( Gext


. Hence 

2)( Gext


. 

 Now, if G  has odd order. Then every 

extension vertex of G  has a degree odd. 

Thus for any extension set h  of G , the 

graph  hG . Hence, by definition 2.6, 

)(Gext


. □  

3. Extensibility of Digraphs. 
       In this section, we introduced the 

concepts of  extension of digraphs, extensible 

class      

  of digraphs and the extensibility number of 

digraph. Further, we characterized the    

  extensibility number of regular and eulerian 

digraphs.  

 

    Here we introduce the concept of 

extension of a digraph. 

Definition 3.1: Let D  be a nontrivial 

digraph. The extension of D   is a  digraph 

denoted by SD   obtained from  D  by 

adding a nonempty set of independent 

vertices S  such that every vertex in S  is 

adjacent or adjacent by every vertex in D  

but not both . In such away S  is called 

extension set of D . In particular, if 

S consists of a single element v , then v  is 

called extension vertex of D .     

     The definition of extensible class of 

digraphs is analogous to that in definition 

2.3, only replace every graph G   by a 

digraph D . 

 

Proposition 3.2:   
1. the class of connected digraphs is 

extensible class. 

2. the class of Hamiltonian  digraphs is 

extensible class. 

The proof is similar to the proof  of 

proposition 2.4. □ 

 

Proposition 3.3:   
1. the class of regular digraphs is not 

extensible class. 

2. the class of eulerian digraphs is not 

extensible class. 

The proof is similar to the proof  of 

proposition 2.5 part (3) and (4) respectively. 

□ 

      

      The definition of extensibility number of 

digraph is analogous to that in definition 2.6  

only replace every graph G   by a digraph D  

as following. 

 

Definition 3.4: let   be the class of digraphs 

with certain property, and D  be a 

nontrivial. The extensibility number of D  

with respect to   is the smallest positive 

integer m , if exists, such that there exists an 

extension set S  of D  with cardinality m  in 

which the new digraph   SD . We write 

)(Dextm


 . If such a number does not exist 
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for D , then we say the corresponding 

extensibility number is  . 

 

Theorem 3.5: Let   be the class of regular 

digraphs, D  be an r-regular digraph with 

even number of vertices n  in  . Then 

kDext 


)(  if and only if k  is the smallest 

number of vertices and D  has regularity 

degree 
2

knr  . 

 

Proof: Let  D  be an r-regular digraph with 

even number of vertices n . 

Suppose that kDext 


)( . Then by definition 

3.4, there exists an extension set 

},...,,{ 21 kvvvS   of D   and k  is the 

smallest cardinality of S  such that the 

digraph  SD . By definition 3.1, S  is 

independent set of vertices and every vertex 

in S  is adjacent or adjacent by but not both 

every vertex in D . As SD   is regular 

digraph and D  has even order n , then every 

vertex of S  in the digraph  SD   has 

indegree 
2
n  and outdegree 

2
n . That is 

211 )()( nvodvid  , 
222 )()( nvodvid  , … 

, 
2

)()( n
kk vodvid  .  

 Also every vertex of D   in the digraph 

SD   has indegree 
2
kr   and outdegree 

2
kr  . As SD   is regular digraph, then we 

must have  
22
kn r     which implies 

2
knr  . 

 

   Conversely, suppose that k  is the smallest 

number of vertices and D  has regularity 

degree 
2

knr  . We prove that  kDext 


)( . 

Let  },...,,{ 21 kvvvS   be a set of 

independent vertices with cardinality k  and 

vertices different from the vertices of D . Let 

every vertex of S  is adjacent to 
2
n  vertices 

of D  and adjacent by the remaining 
2
n  

vertices of D  such that every vertex in D  

has indegree 
2
kr   and outdegree 

2
kr  .  As 

2
knr  , then every vertex of D  in the 

digraph SD   has indegree 
222
nkkn   and 

outdegree 
2
n . Then the digraph SD   is 

regular. As such S  is extension set of D  

with respect to   . Hence kDext 


)( . 

If )(Dext


< k , then there exists an extension 

set },...,,{ 21 luuuh  of D  with cardinality 

l < k  such that  hR . By similar 

argument to part (1) above, we get that the 

indegree of every vertex of h  in the digraph 

hD   is 
2
n  and the outdegree is 

2
n  . Also the 

indegree of every vertex of D  in the digraph 

hD   is 
2
lr   and the outdegree is 

2
lr  . 

Since the digraph  hD   is regular, then we 

must have 
22
ln r   which implies 

2
lnr   

with l < k   a contradiction to our assumption 

that 
2

knr   and k  is the smallest number of 

vertices. Hence kDext 


)( .□ 

 

Theorem 3.6: Let ε  be the class of eulerian 

digraphs, and εD . Then  

                     

)(
ε

Dext  even is  D oforder   theif    2

odd is  D oforder   theif  

 

  
   

The proof is similar to the proof of theorem 

2.9. □ 

 

3. Conclusions. 

    We conclude from this results that we 

can extend some graphs by adding vertices 

to get a new graphs with the same 

properties of there original graphs. We 

found some  extensible classes of graphs 

and digraphs also the extensibility numbers 

for some graphs and digraphs.The authors 

can check the extensibility number for 

other kinds of graphs and digraphs.  
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 قــابـــليـــــة توسيـــــــــــع البيــــانات

 

 اكـــرم  بــرزان عطــــــار

 جــــامـــعــــة ذي قـــار  -كليـــةالــتربيــــة   -قســــم الريــاضيـــــات 

 ذي قار –العراق 

 

 صالملخـ

 
والغير قابلة للتوسيع. كذلك تم تقديم مفهوم عدد في هذا البحث تم تقديم مفهوم توسيع البيانات ودراسة البيانات القابلة للتوسيع 

 التوسيع للبيانات وإيجاد قيمته للبيانات المنتظمة وبيانات اويلر.

 

 

 


