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Abstract
In this paper we study the Bochner curvature tensor of almost Kahler manifold. We found
the components of Bochner tensor of almost Kahler manifold in the adjoint G-structure space by
using Kirichenko's tensors. It has been proved that an almost Kahler manifold is a manifold of

class £, if and only if it is Kahler.

1. Introduction

The Bochner tensor was given by S. Bochner (1949)[4]. He found this tensor in the Kahler
manifold as Weyle's tensor(conformal curvature of Riemannian manifold). S. Tachibana (1967)[13]
gave it the real form and proved that the Bochner tensor has a meaning on any almost Hermatian
manifold. M. Mastumoto(1969)[10] proved that Kahler manifold of constant scalar curvature tensor
with zero Bochner tensor is local symmetric. S. Tachibana (1970)[14] proved that Kahler manifold
of constant scalar curvature tensor with zero Bochner tensor is local holomorphic-isometric of
product complex spaces. Z. Olsgak(1984)[12] gave classification of 4-dimensioal compact flat
Bochner of Kahler manifold with non positive scalar curvature tensor. M. Petrovic and L.
Verstraclen(1987)[11] are classified flat Bochner of Kahler manifold that the Weyle's tensor
satisfies some conditions. A. Al-Othman(1993)[2] studied the Bochner tensor of Nearly Kahler
manifold, he found the classification of flat Bochner tensor of NK-manifold and studied the
Bochner tensor of B-constant type of almost Hermatian manifold and he defined the holomorphic
Bochner curvature of almost Hermatian manifold. A. Al-Othman(2008)[1] studied the Bochner-
recurrent Nearly Kahler manifold, he proved that Bochner-Recurrent Nearly Kahler manifold is
either Bochner-symmetrical or Bochner-recurrent Kahler manifold.

In this present work we give the components of Bochner tensor of Almost Kahler manifold and
study the almost Kahler manifold of class 5, .

2. Preliminiries
Definition 1.2 [5]
A tensor field J of type (1,1) is called an almost complex structure, such that, at each point

p € M can be defined an endomorphism of the tangent space T, (M) with the property J?=—id,
where id: T, (M) — T, (M) is the identity transformation.

107


aa
Typewritten text
website: http://jsci.utq.edu.iq                                                                   Email: utjsci@utq.edu.iq     


J. Thi-Qar Sci. Vol.2 (2 April/2010

Definition 2.2 [5]

A manifold provided by the almost complex structure is called an almost complex manifold.
It is well-known, that every complex manifold has even dimension and it is orintable. In general the
converse is not true[8].

In the module  X°(M) can be defined two projections o =%[£a’—h’——lj and
& = > (id + Jv'=1), where X° (M) is the complexification of the module X (A1),

The setting of projections o and & is equivalent to the decomposition of the module X {Af) in the
direct sum of these projections.

ie. ¥X € X°(M), X = o(X) + &(X).

Definition 3.2 [8]

The pair {J, g ==.,.==} is called an almost Hermitian structure (4H- structure) on the manifold
M, where ] is the almost complex structure on M, g =<.,.> is a Riemannian metric on M, such that
< XY ==<JX,J¥ = XY eX(M)

Definition 4.2 [8]

A manifold provided by AH- structure is called an almost Hermiation manifold. It is known [6]
that the setting of an almost Hermiation structure on M is equivalent to the sitting of adjoint G-
structure on M with structure group is a unitary group U{#). This G-structure is called an adjont G-
structure space[7].

Assume that the value of indices a.b,c,d.e g, h ... is in the range 1 to n, and the indices
Lk, .. is in the range 1 to 2n. Denote @a=a-+mn , then the indices are
a,bc,d,e,f, g, ...408déFf g ..

In the space of the adjoint G-structure, the components of the tensor fields J and g are given by the
matrices:[9]
: o I, - TV —1 0
(9:) = (f_“_ 7). ()= [_\ P M_._—l) (2.1)
Where I, is the unit matrix of order n.
Definition 5.2 [9]

An AH-structure is called an almost Kahler structure(AA&- structure) if the fundamental form
Q(X,¥) =< X,JY =isclosed i.e. d Q = 0.

A manifold M with AK-structure is called an almost Kahler manifold(A4A-manifold).
Definition 6.2 [9]

The components of the fundamental form in the adjoint G-structure space are given by the matrix:

(2,)=| ° f-“-’*'_l) 2.2)

t iy \_E“ "rl_l |:::|
Definition 7.2 [9]

The Riemannian curvature tensor & for M is 4-covariant tensor:
R:T,(M) x T,(M) x T,(M) X T,(M) — R which is defined by:
R(Xy, X, X5, X,) = g(R(X3,X,)X;, X,) where X, T, (M) W¥i=1,..4 and satisfied the following
properties :
1. R(Xy, X5 X3, Xy) = —R(X3. X4, X3, Xy)
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2. R(Xy, X3, X3, X,) = —R(X1,X,, X3, X5)
3. R (X, X5, X3, %) = R(Xp, Xy, Xy, X;5)
4. R ('EIJ'XZJ 'XEJ 'Xéj Ll E(-X‘M}{EJ -X;_J -ij - R (‘X‘li-}f;_i -X,ZJ -X,EII =0

Proposition 8.2 [9]
The components of Riemannian curvature tensor of Ak-manifold in the adjont G-structure space
are:

. Réﬂ = Ang +2B°" Bag —4Bgan B
2 Risg =4B%" Bapn — Ay —2B%" Byyg
3 R% . = Ang +2B%" By —4B®" By,
4 dbh bd bdh
4 R5C‘ = 4B Bean —Aac —2B™ Bpac
a b
> R b -2 Bacd
6. Rbcd =2Bp
5 Rt?éd _ZBadC 8. Ryed =2 B 9. Rgcd =4B"™ B,y 10
RE —_pp@d gy Ra _ppW  ,Ra __4pldadld] 13
béd d " bed c Noed T )
a = a c a _ d
Roca = _4B[C‘ abld] 14. Rped =2 Baap 15 Rbcd == 2B

a hcd
16.R% . =4B B

3. Bochner curvature tensor
Definition 1.3 [2]

Bochner curvature tensor on AH-manifold defined as the following form:
BXYZW)=R(XY,ZW)+L(X.W)g(V.Z)—L(X,Z)g(¥Y.W)+L(Y,Z)g(X, W)
— LY, W)g(X,Z)+LUJX. W)g(Jv.Z2) — LUX, Z2)g(J¥, W)
+ LY. Z)g(JX. W) — L(JY,W)g(JX,Z) — 2L(JX,Y)g(JZ,W)
—2L(JZ, H‘ngJ{ Y)p

Where L(X,Y) = — g(rX,Y) +

a scalar curvature tensor and X, ¥, Z, W € X[_-'uf]_
Let C(X,¥) = L{JX,¥) and we have g(JX.Y) = —Q(X,Y), thus
B = Rija T La8pe — Lin8jn T LG — LpGae — a2, + G, — G, + CQ, +

ijkl ik LU PN+ T

K

(Zn+2)(2n+4)

g(X,Y), risaRiccitensor and X is

2,9, +2C,Q
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where Ly = ——7; + R g,
. ¥
and K = — — ‘
22n+2}2n+4)
and C;; = LUE. g.) = 1 JEr +Eﬁ‘g- _
H v 2n+4 F1 [ dij

Theorem 1.3
The components of Bochner curvature tensor of AK-manifold are:

l' Jlgcbcr.' = Rcbcr.‘

— 1 3] oo 1 oo od ]

2.Bspca = Rapca T mez (rpa 62 =71y 65) + mez (Tea 05 = Tae 05 — 2754 G;)
. — . 1 . Al ol 1 oh oh o
B-Bcbcd - Rc.i.:lcr.' T Inta [_ch Oy = Tag Y }_ Tnta ETL'.'E Ug = Teg Oy — E'Tcr.' Uc)
— 1 or ol 1 o] b dv]

4.Bapca = Ropea + Tmos (g 85 — Taa G5) + P (27, 82 —7ca 67 — 785

_ 1 v, rd od
S. JS:.'.JI:L"." - R:.‘.:lcf." T anra [_chﬂb - Tbcﬂc}_

6. JSEECL‘.‘ = Rfii;cr.'

1 od od o~
22 (E'chu: = TypeUg T CU.'.J:I

[ o

— 1 [ ign gl o} ri o c o cCoQ gl N
7. Bavea = Ravea i (rgdy +rgdg +rdg +r3by) + 4KGg;
. — oL w2 pd 3 epd o dee L dea’y tFoad
8. Bavcd = Rawped T 3 (rf0g +r56 + 1588 + i3 K0,
Proof

suppose that M is AK-manifold, in the adjoint G-structure space by using

and (2.3) we get:

, . 1
l.put i=a,j=>b weobtained L, = ~mialab
- 1
2put i=d,j =bweget Lyz;=— mra ! db
d.put i=d.j=b weget Ly, =—T—15 +K 6

4put i=a,j=b weget Loz =—-—75 +K &

We compute the components of C,; , in the same computes we obtained:

o
Cab T4 cb Yg
V=1

. .
Cas Inea D Oc
C., =L sa_ TR 60
G0 = Sp.a b O TNT Op
Coo=—1 b 68 { yTIR 8
ak _”n+4 Ta Og T = Oq

Now we compute the components of Bochner curvature tensor:

T

lput i=a,j=bk=cl=d then:
JSI:EJEL'.' = R:.‘Jcr.‘ T L:r.‘ o — L:c pa ™ L.'.:lc Hag — Ln'.:'l.'.' Hoe — ":r:r:.' n‘bc T Ccc ‘rl.'.:lt.'
de n‘cc T E'ch n‘cc.' T E'Ccr.' n‘cb

From equations (2.1), (2.2), (1.3) — (10.3) we get :

JS::.'.JGL'.‘ = Rcbcr.‘
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2. put '=&j=b,k=qi=dthen:

Bavee = Rapea T Laa 85c — Lac gbr.‘ T Ly sa — Lpg Bac — Caa Npe T Csc Npg — Gy N
T Cog g + 204, Qg + 20, Qg
From equations (2.1, 2.2, 1.3-10.3) we get :
1 R - 1 - - -
Bavca = Rapea T Tmet (rpg 68 — 1y 63) + P (rea 05 — 7ac 05 — 2rag 07)  (12.3)

3. put £=¢1,j=§,k=c?=d then:
E_TEL'.' Hb}_

4.put i=a,j=bk= C,E = d then:

J'gc.i.;cr.' = R:i;ct.' T3 (Tn‘c dg Teg 5;’: - E'T:t.' CEIhr:b) (133)

In+a

Bavéa = Rapea + ,_.,,1___ (rpq 85 = 7ag 05 s~ Teabi— T 03) (14.3)
5. put £=¢1,j=b,k=c?=c{ then:

Baved = Raped + 3o (Tac08 = 14e02) + 5 (27,08 — 7,62 — 7,69 (15.3)
6.put i =é&,j= bk =cl=d then:

Bagea = Raiea (16.3)
7.put i =d,j= bk =c,l=dthen:

Bivia = Rapea — o3 (r805 + 1505 + 7588 +1E85) + 4R65S (17.3)
8.put i =4&,j=bk=cl=d then:

Bivei = Raped + — (rf08 + 7883 + rf62 + r867) — 4K6% (18.3)

3

ra

Definition 2.3 [2]
The Bochner curvature tensor is of:
1.class 3, if B(X.V.Z, W) = B(X.Y,JZX JW)
2. class ,5‘: if JS(X, V¥, Z, H") = ,SUX“."?, =z, H") + JBUXJ Y, /Z, H’) + JSUXJ Y,ZJW)
3.class 5 if BIX.V,Z, W) =B(JX,JV,JZX,JW)
Definition 3.3 [3]
An AH-manifolds is called a Kahler manifold if 5%*¢ = ¢ and called an almost kahler manifold
if B2/ =0 where B2*¢ = 0 is structure tensor( Kirichenko's tensor), and the bracket ( ) denote to

symmetric.
Theorem 2.3
Almost Kahler manifold M is of class £, if and only if M is Kahler manifold.

Proof
According to class [, we get:

Jlgﬁi;cd = JS(EEJ Egs ey Er.‘) = 18(5&15151)[5;:)[5,:)
= Bleq e V12,V 1e,)
= (V-1)(V-1)B(ea 5. 2. £2)
= — Blez 55,50 84) = — Baseq
Thus JBEEEL‘.' Ll JBEEEE‘ =0 = 181."351:1:.' =0
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Since Bz, =4B"*B, . = B"*B, . =0

By folding (a and c) and (b and d) we get
BBy = 0 = ElByg|* =0 = By, = 0

According to [3]this Kahler condition.

Therefore A is Kahler manifold.
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