J.Thi-Qar Sci.

ISSN 1991-8690 website: http://jsci.utq.edu.iq

الترقيم الدولي ٢٩٩٠ ـ ١٩٩١ Email: utjsci@utq.edu.iq

March/2008

On Pre-connected sets in Bitopological Spaces

Vol.1 (1)

Alaa Erees

Dept. of Mathematics - College of science - Kufa University

<u>Abstract</u>

In this paper, we give and study a generalization for the concept

"pre-connected set" in bitopological spaces , through as well as we

give several various results related to this generalization .

Introduction

The study of pre-connected sets in Bitopological Space takes place at several sources and researchers like Kelly (1963), Valiru (1977), Jelles (1989), Al-Swidi (1993) and Dontcher (1998). A generalization of the definition of the pre-connected set is presented with some theorems and examples to explain and illustrative it .Conclusions are added at the end of it.

1. Some definitions

Definition (1) :[2]

Let (X, τ) be a topological space. A subset A of X is said to be pre-open set iff $A \subseteq int_{\tau}(cl_{\tau}(A))$. The family of all pre-open sets is denoted by pr-O(X).

Definition (2) :[3]

Let (X, τ, ρ) be a bitopological space. A subset A of X is called pre-open set with respect to the two topologies τ, ρ if $A \subseteq \operatorname{int}_{\tau} \left[cl_{\rho}(A) \right]$. The collection of all pre-open sets with respect to the two topologies τ and ρ is denoted by pr - O(X).

Definition (3) :[2]

Let (X, τ, ρ) be a bitopological space. A subset A of X is called pre-closed set of X iff the complement of A is pre-open set of X. The collection of all pr-closed sets with respect to the two topologies τ and ρ denoted by pr - C(X).

Note (1) :

The family of all pr - open sets of X is not necessary a topology on X, see the following example.

Example (1) :

Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\},$ and $\rho = \{X, \phi, \{c\}\}, (X, \tau), (X, \rho)$ are two topological spaces. Then (X, τ, ρ) is bitopological space, so :

$$pr - O(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\},\$$

Vol.1 (1)

Definition (4) :[6] Let (X, τ, ρ) be a bitopological space. Two non- empty subsets A and Bof X are said to be pr-separated iff $[A \cap pr - cl(B)] \cup [B \cap pr - cl(A)] = \phi$ That is A and B are pr-separated sets iff A and B are disjoint and every one contains no limit points of the other with respected to pr - O(X).

Example (2) :

Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\rho = \{X, \phi, \{c\}, \{a, b\}\}$. $(X, \tau), (X, \rho)$ are two topological spaces, then (X, τ, ρ) is a bitopological space , so , $pr - O(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\},$ Let $A = \{a\}$ and $B = \{b\}$ are two pr-open sets.

Hence A and B are pr-separated sets, since

 $pr - cl(A) = pr - cl(\{a\}) = \{a\}, pr - cl(B) = pr - (\{b\}) = \{b\},$ and $[A \cap pr - cl(B)] \cup [pr - cl(A) \cap B] = [\{a\} \cap \{b\}] \cup [\{a\} \cap \{b\}] = \phi \cup \phi = \phi.$

So , A and B are pr-separated subsets of X

Definition (5) :[6]

Let (X,τ,ρ) be a bitopological space. A subset A of X is said to be pr-disconnected set iff it is the union of two pr-separated non-empty sets in X, that is \exists two non-empty sets C and D in X such that $pr-cl(C) \cap D = \phi$, $C \cap pr - cl(D) = \phi$ and $A = C \cup D$. A is called pr-connected iff it is not

pr-disconnected set .

Example (3) : Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and
$$\begin{split} \rho &= \{X, \phi, \{b\}, \{a, c\}\}. \quad (X, \tau), \quad (X, \rho) \text{ are two topological spaces. Then } (X, \tau, \rho) \text{ is a bitopological space, so, } \\ pr &- O(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}, \\ \text{Let } A &= [a, b] \text{ and } C &= [a], D &= [b] \text{ so } A &= C \cup D. \\ \text{Hence } pr &- d(C) &= [a], pr &- d(D) &= [b], \\ [pr &- d(C) \cap D] \cup [C \cap pr - d(D)] &= [[a] \cap [b]] \cup [[a] \cap [b]] &= \phi. \\ \text{Therefore } A \text{ is } pr &- [disconnected set, but if } B &= [b, c], C &= [b], D &= [b, c] \\ \text{hence } pr &- d(C) &= [b], pr &- d(D) &= [b, c] \\ [pr &- cl(C) \cap D] \cup [C \cap pr - cl(D)] &= [[b] \cap [b, c]] \cup [[b] \cap [b, c]] &= [b] \cup [b] &= [b] \neq \phi. \\ \text{Then } B \text{ is } pr &- \text{connected set.} \end{split}$$

Notes (2) :

1. The empty set is trivially pr-connected.

2. Every singleton pr-open set is pr-connected set, since it can not be expressed as a union of two non-empty pr-separated sets.

Definition (6) :[6]

Two points a, b of a bitopological space (X, τ, ρ) are said to be pr-connected iff they are contained in a pr-connected subset of X.

Definition (7) :[4]

Let (X, τ, ρ) be a bitopological space, and Y be a subset of X. The relative bitopological space for Y is denoted by (Y, τ_Y, ρ_Y) , such that :

$$\tau_Y = \{ G \cap Y : G \in \tau \}$$

 $\rho_Y = \{H \cap Y : H \in \rho\}$

 (Y, τ_Y, ρ_Y) is called a subspace of the bitopological space (X, τ, ρ) , the relative bitopological space for Y with respect to pr-open sets is the collection $pr-O(X)_Y$ given by $pr-O(X)_Y = \{G \cap Y : G \in pr - O(X)\}$

Vol.1 (1)

2. Various results :

Theorem (1) :

Let (Y, τ_Y, ρ_Y) be subspace of (X, τ, ρ) let $A, B \subset pr - O(X)$ then A and B are pr - O(X)-separated iff they $pr - O(X)_Y$ -separated.

Theorem (2):

Let (Y, τ_Y, ρ_Y) be a subspace of bitopological (X, τ, ρ) and $A \subset Y$. Then A is pr-disconnected iff it is pr_Y disconnected.

Proof :

By above theorem, therefore, A is the union of two pr-separated sets iff it is the union of two pr_{Y} -separated sets.

Theorem (3):

A bitopological space (X, τ, ρ) is pr-disconnected iff \exists a non-empty proper subset of X which is both pr-open and pr-closed in X.

Proof :

 \leftarrow

Let A a non-empty proper subset of X which both pr-open and pr-closed.We will show that X is a pr-disconnected.

Let $B = A^C \Rightarrow B \neq \phi$, since $A \subset X$, so $B \bigcup A = X$ and $A \bigcap B = \phi$(*) Since A is both pr-open and pr-closed $\Rightarrow B$ is both pr-open and pr-closed , hence pr-cl(A) = A, pr-cl(B) = B. Thus X is pr-disconnected.

 \Rightarrow

Let X is pr-disconnected, Then \exists two non-empty *pr*-separated subsets A and $B \ni X = A \cup B$ (**) $pr - cl(A) \cap B = \phi$ and $A \cap pr - cl(B) = \phi$, $A \subset pr - cl(A)$ since and $pr-cl(A) \cap B = \phi \Longrightarrow A \cap B = \phi$. **Hence** , $A = B^C$, by (**) $B \neq \phi \Longrightarrow X \subseteq A \bigcup pr - cl(B)$ since $(B \subset pr - cl(B))$. But $A \bigcup pr - cl(B) \subseteq X \Longrightarrow X = A \bigcup pr - cl(B)$, also $A \cap pr - cl(B) = \phi \Longrightarrow A = [pr - cl(B)]^c$. Similarity , $B = [pr - cl(A)]^{C}$. Since pr-cl(A) and pr-cl(B) are pr-closed sets, therefore A and B are pr-open sets, and hence $A = B^C$ is a pr-closed set (since $A \cap B = \phi$). Thus A is a non-empty pr-closed and pr – open set.

Theorem (4):

Let (X,τ,ρ) be a bitopological space. Then X is a pr-disconnected iff any one of the following statements holds :

i. X is the union of two non-empty disjoint pr-open sets.

ii. X is the union of two non-empty disjoint pr – closed sets .

Proof :

 \Rightarrow

Let X be a pr-disconnected $\Rightarrow \exists A \neq \phi, A \subset X$ which is both pr-closed and pr-open set. Therefore A^{C} is also both pr-closed and pr-open set and $A \cup A^{C} = X$. Hence the sets A and A^{C} are satisfy (i) and (ii).

$$\Leftarrow$$

Let $X = A \cup B$ and $A \cap B = \phi$, where A and B are non-empty pr-open (pr-closed) sets $\Rightarrow A = B^C$, so that A is pr-closed(pr-open)set. Since $B \neq \phi, B \subset X \Rightarrow A \neq \phi, A \subset X$ which is both pr-open and pr-closed. Hence X is a pr-disconnected.

Theorem (5):

Let *E* be a pr-connected subset of a bitopological space (X, τ, ρ) . If $F \subset X$ such that $E \subset F \subset pr - cl(E)$, then *F* is a pr-connected. In particular, pr-cl(E) is pr-connected.

Proof :

By (*) and (**) we get $B = \phi$ which is a contradiction, since $B \neq \phi$.

Hence F is a pr-connected. Again, since $E \subset pr - cl(E) \subseteq pr - cl(E) \Rightarrow$ pr - cl(E) is a pr-connected.

Theorem (6) :

Let (X, τ, ρ) be a bitopological space ,and *E* is a subset of *X*. If each two points of *E* are pr-connected in some pr - connected subset of E, then E is a pr - connected subset of X.

Proof :

Suppose that E is not pr-connected, then $\exists A, B \neq \phi$ and $A, B \subset X \ni A \cap pr - cl(B) = \phi$ and $pr - cl(A) \cap B = \phi, E = A \cup B$ since $A, B \neq \phi \Longrightarrow \exists a \in A \text{ and } b \in B \text{ such that}$ a and b must be contained in some pr-connected subset F of E since $F \subset A \cup B \Longrightarrow$ either $F \subset A$ or $F \subset B \Longrightarrow$ either $a, b \in A$ or $a, b \in B$. Let $a, b \in A$, since $b \in B \Longrightarrow A \cap B \neq \phi$, which is a contradiction, since A and Bare disjoint . Hence E must be a pr-connected.

Theorem (7) :

Let $\{G_{\lambda} : \lambda \in \wedge\}$ be a family of *pr*-connected subsets of a bitopological space (X, τ, ρ) such that $\bigcap \{G_{\lambda} : \lambda \in \wedge\} \neq \phi$. Then $\bigcup \{G_{\lambda} : \lambda \in \wedge\}$ is a *pr*-connected set.

Proof :

Suppose that $E = \bigcup \{G_{\lambda} : \lambda \in \land\}$ is a pr-disconnected $\Rightarrow \exists$ two non-empty disjoint sets G_1 and G_2 both pr-open in the subset E of $X \ni E = G_1 \cup G_2$, $\forall \lambda, G_1 \cap G_{\lambda}, G_2 \cap G_{\lambda}$ are disjoint sets both pr-open in the subset $G_{\lambda} \ni$ $(G_1 \cap G_{\lambda}) \cup (G_2 \cap G_{\lambda}) = (G_1 \cup G_2) \cap G_{\lambda} = G_{\lambda}$(*) Since G_{λ} is a pr-connected, one of the sets $G_1 \cap G_{\lambda}$ and $G_2 \cap G_{\lambda}$ must be empty, say $G_1 \cap G_{\lambda} = \phi$, then by

 $(*) G_2 \cap G_{\lambda} = G_{\lambda} \Longrightarrow G_{\lambda} \subset G_2$.

J.Thi-Qar Sci.

Vol.1 (1)

$$\forall \lambda \in \land \Rightarrow \bigcup \{G_{\lambda} : \lambda \in \land\} \subset G_2 \Rightarrow G_1 \cup G_2 \subset G_2 \Rightarrow G_1 = \phi$$

, which is contradiction .

Hence *E* must be pr-connected since G_1 is non-empty, so *E* is pr-connected.

Theorem (8) :

Let $\{G_{\lambda} : \lambda \in \wedge\}$ be a family of *pr*-connected subsets of a bitopological space (X, τ, ρ) such that one of the member of this family intersects every other member , then $\bigcup G_{\lambda}$ is a *pr*-connected set . $\lambda \in \wedge$

Proof :

Let $G_{\lambda \circ}$ be a fixed member of the given family $\ni G_{\lambda \circ} \bigcap G_{\lambda} \neq \phi, \forall \lambda \in \wedge$ then $D_{\lambda} = G_{\lambda \circ} \bigcup G_{\lambda}$ is a pr-connected set $\forall \lambda \in \wedge$ by previous theorem . Now

$$\bigcup \{D_{\lambda} : \lambda \in \wedge\} = \bigcup \{G_{\lambda \circ} \bigcup G_{\lambda} : \lambda \in \wedge\} = G_{\lambda \circ} \bigcup [\bigcup \{G_{\lambda} : \lambda \in \wedge\}] = \bigcup \{G_{\lambda} : \lambda \in \wedge\}$$

and

 $\bigcap \{D_{\lambda} : \lambda \in \wedge\} = \bigcap \{G_{\lambda \circ} \cup G_{\lambda} : \lambda \in \wedge\} = \\\bigcap \{D_{\lambda} : \lambda \in \wedge\} = G_{\lambda \circ} \cup [\bigcap \{G_{\lambda} : \lambda \in \wedge\}] \neq \phi$ (always) ,since by our assumption $G_{\lambda^{\circ}} \neq \phi$ is intersects every $G_{\lambda} \neq \phi$ as $G_{\lambda^{\circ}} \bigcap G_{\lambda} \neq \phi, \forall \lambda \in \land$.

Hence by previous theorem $\bigcup \{D_{\lambda} : \lambda \in \wedge\} = \bigcup \{G_{\lambda} : \lambda \in \wedge\}$ is a pr-connected set.

<u>References</u> :

- Al-Swidi,Luay,and Shaker, A. Y. "Semi compactness in bitopological spaces", to appear in the magazine of technical institutes establishment (1993).
- [2] Dontcher, J. "Survey On Preopen sets", ar 14, Math 30 (1998), 1-18.
- [3] Kelly, J. C. "Bitopological spaces", proc. London Math.Soc 13 (1963), 71-89.
- [4] Kelly, J. C. "Bitopological space", publ Math Debrecen,15,1968,87-90.
- [5] Njastad, 0.,"ON some classes of nearly open sets", pacific, J. Math. 15(1965), 961970.
 [6] Valeriu, P., "On Some Properties of Bitopological Semi Separation space", (1977), 71-77.
- [7] Tapi, U.D. and Thakur, S.S and Sonwalkar,
 "Quasi-preopen sets" J. Indian Acad. Math
 , 17 (1) (1995), 8-12.

المجموعات المتصلة تقريباً في الفضاءات ثنائية التبولوجيا ^{علاء} عريس جامعة الكوفة - كلية العلوم - قسم الرياضيات

<u>المستخلص</u> في هذا البحث نقدم وندرس تعميم لمفهوم ً المجموعة المتصلة تقريباً في الفضاءات ثنائية التبولوجي من خلال تقديمنا عدة نتائج متنوعة التي تتعلق بهذا التعميم .