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Abstract

We consider the problem of scheduling jobs on a single machine about a common due
date. Our objective is to determine the common due date and processing sequence of new jobs
together with the re-sequencing of old jobs which minimize the sum of jobs’
earliness/tardiness, completion time penalties and due date related penalty. We drive
properties that can be used to find the optimal common due date and processing sequence.
Since our problem is NP-hard, we propose Ant colony algorithm (ACO) to solve the problem
efficiently. Results from computational study reveal that Ant colony algorithm (ACO) can
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1.Introduction

Many researchers have studied the scheduling models that deal with earliness and tardiness
penalties since early 1980s.

In some formulations of E/T problems, the due dates are given as problem parameters; while
in others the due dates are decision variables whose values are determined as part of the
scheduling problem. Such problems arise when a firm is required to offer a due date to its
customer during sales negotiations or after order receiving. Cheng and Gupta [2] present a
comprehensive literature survey involving due date determination decisions. A number of
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authors have studied the E/T models where all jobs share a common due date, but the due date is
allowed to be a decision variable. Common due date models are relevant for certain situations
where several jobs constitute a single customer order, multiple fabrication operations come
together for assembly operations, or material handling economies dictate infrequent shipments
such as monthly overseas shipments. E/T models considering common due date determination
can be classified according to the types of penalties. Some models prescribe common penalties
[4]; others permit differences between the earliness and tardiness penalties [9]; and still others
permit differences among jobs [3]. The reader is also referred to Hall and Posner [6], Kahlbacher
[7], and Weng and Ventura [12] for more recent publications.

On the other hand, most due date determination models assume that the production system
carries no workload at each scheduling epoch. However, this assumption might be questionable
in practice. In some situations, the scheduler would need to update the existing schedule
(reschedule the sequence of old jobs) when some new jobs have arrived into the system. Hence it
might be more realistic to consider the models of due date determination (for new jobs) with
resequencing (for old jobs) at each scheduling epoch. This line of research can be found in Unal
et al. [11] and Li and Cheng [8].

One way to extend typical due date determination E/T models is to include some additional
penalties such as due date penalty and completion time penalty. These additional penalties are
introduced by Panwalker et al. [9]. The due date penalty provides a disincentive for setting due
dates too late. The completion time penalty provides an incentive to turn around orders rapidly.
Note that the completion time penalty tends to induce shortest-first sequencing, whereas the
earliness cost induces the reverse sequencing, at the start of scheduling.

In this paper, we consider the problem of scheduling jobs on a single machine about a
common due date to minimize total penalty cost. Earliness and tardiness penalty rates are
allowed to be arbitrary for each job, which is in contrast with most works on E/T models which
assume somewhat simpler types of penalty rates such as a single penalty rate, a single early rate
and a single tardy rate, or a single arbitrary rate for a job. Also two additional penalties (due date
penalty and completion time penalty) are included in the model. In addition, rescheduling the
sequence of old jobs is included in the model and the resequencing problem is considered at each
scheduling epoch.

Hall and Posner [6] prove that a special case of E/T model with a single arbitrary rate for a
job is NP-hard. Note that our model is a much more complex one and the problem is obviously
NP-hard. We derive some scheduling properties to find the optimal common due date and job
sequence. Then we propose and evaluate Ant colony algorithm (ACO) that takes advantage of
some structural properties of our model, and find promising results from a computational study.

2. The model

To describe our model, let n be the total number of jobs to be scheduled ( r old jobs and m
new jobs). The processing time of job i is known and is denoted as P;, and d; denotes the due date
of job i. As a result of scheduling decisions, job i will be assigned a completion time, denoted C;.
Let E; and T; represent the earliness and tardiness, respectively, of job i. These quantities are
defined as Ei= max{0, di- C; } and Ti=max{0, , Ci- d; } , respectively, where d;= d° for old
jobs i=1,...,rand di=d for new jobs i=r+1, ..., n.
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Note that the common due date of new jobs, d, is a decision variable and that of old jobs d°,
is given as a fixed value. Let a; and 'Bi denote the earliness and tardiness penalty rates for job i,

respectively. In addition, let Aand @ denote a single due date and a single completion time
penalty rates for new jobs, respectively. Then, the objective function for a schedule S and a
common due date d can be written as

Min f(d,S) ==:§:(cxiE; + BT+ :i:(;ld K2, 7 T (@h)

i=1 i=r—+1
Our objective is to find the optimal common due date of new jobs and the optimal sequence of
all jobs simultaneously to minimize the total weighted penalty cost. That is, the problem is to
find d* and S* minimizing the objective function f (d,S) . We assume that the machine can
process at most one job at a time and can not be kept idle as long as there are jobs to be
processed. We also assume that no preemption of the jobs is allowed.

3. Properties of optimal common due date and job sequence

In this problem, we distinguish new jobs from old jobs, and try to find the optimal common
due date of the new jobs and the optimal sequence of all the jobs in order to minimize total
penalty cost. Note that we have only to determine the optimal job sequence (actually
resequencing) for the old jobs since their common due date is given as a fixed value. Also note
that the new jobs are assumed to be processed after the completion of all old jobs. The jobs,
either old or new, are divided into an early job set E and a tardy job set T, whose jobs are
completed exactly or ahead of the common due date (Ci<d) and after the common due date
(Ci>d), respectively. And if we let S; (or Sy) be a schedule of the old (or new) jobs such that S
consists of S; and S, the objective function (1) can be rewritten as

f(d,S)=f(S))+f(d,S2) 2)

Where

fs) = (4 E + BT)
i=1

And
n
f,(d,S,) = D (@E + BT, +2d +6C)
i=r+1

According to our assumption on scheduling principle, minimizing f(d, S) is equivalent to
minimizing f1(S;) and fo(d, Sy) separately. Hence we try to obtain S;* which minimizes f1(S;) and
(d*, So*) which minimizes f,(d, Sy), in order to obtain the optimal common due date (d*) and the
optimal sequence (S*).

First consider the problem of sequencing old jobs to minimize f1(S1).

Property 1: Si* is determined by

(1) early jobs are sequenced in non-decreasing order of «; /P;,
(2) tardy jobs are sequenced in non-increasing order of £i/P; .
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The property should be obvious only if the meanings of «i/P; and pi/P; are appropriately
interpreted. And hence, the proof is omitted.

Now let us consider the problem of determining the common due date and the job sequence
of the new jobs to minimize f,(d, S;). Following two properties are associated with this problem.

Property 2: For any given sequence S, the optimal common due date d* is the same time point
as one of the new job completion times.

The property is straightforward to prove by contradiction. The proof is similar to the proof
found in Hall and Posner [6] and is omitted.

Property 3: Given an early job set E and a tardy job set T under a common due date (d), S;* is
determined by

(1) for J, € E, jobs are sequenced in non-decreasing order of the value (ai —49)/Pi .

(2) forJ, €T, jobs are sequenced in non-increasing order of the value (,Bi - (9)/Pi .

Proof
Consider a sequence Sg of e early jobs in which there exists a pair of adjacent jobs, i and j,

with j following i, such that (ai —6?)/Pi >(aj -6)/P J We can assume that the common due

date, d, is equal to the completion time of the last job in Se. Now construct a new sequence, Sg',
in which jobs i and j are interchanged in sequence and all other jobs finish at the same time as in
Se. Let A denote the set of jobs preceding jobs i and j and B denote the set of early jobs following
i and j, in both schedules. In addition, let P, and Pg denote the total processing times of the jobs
in set A and B, respectively. Also, let ECk(S) represent the cost incurred by the k-th job in

€
schedule S. We first show that kz ECk is smaller under Sg ' than under Sg which can be written
=1
as follows.
€
> EC, (Sg)= > EC, (Sg)+EC.(Sg)+EC.(Sg)+ > EC, (Sp)
kzlkEkeAkE I‘"E JEkeBkE

:kgAECk(SE)’Lai(Pj + PB)+6?(PA+ Pi)

+ochB +¢9(PA+Pi +Pj)+kZBECk(SE)
S

And
e ’ ! ! ’ [
kélECk(SE):kgAECk(SE)+ECi(SE)+ECj(SE)+ z ECk(SE)

keB
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e
:kgAECk (SE')+aj(Pi +Pg)+0(Py +Pj)

+ajPg +0(Py+P; +P)+ ¥ Eck(sE’)
keB
Therefore,

e € '
2. EC Bg)- 2 EC g )=P; (e ~0)-Pi(aj ~0)>0

In words, interchanging jobs i and j reduces the relevant cost. Hence we can conclude that
any sequence of early jobs not satisfying (1) can be improved with respect to f,.
2) Consider a sequence St of t tardy jobs in which there exists a pair of adjacent jobs, i and j,
with j following i, such that(,Bi +9)/Pi <(,Bj +6?)/Pj.And assume that the common due

date, d, is equal to the start time of the first job in St. From S+, construct a new sequence, St', in
which jobs i and j are interchanged in sequence and all other jobs finish at the same time as in Sr.
Let E, A and B denote the set of early jobs, the set of tardy jobs preceding jobs i and j and the set
of jobs following i and j in both schedules, respectively. And let Pg and P denote the total
processing time for the jobs in set E and A, respectively. Also, let TCy(S) represent the relevant
cost of the k-th job in schedule S. Then,

t
2 TC(5p)= £, TC (8p)+TC;(Sp)+TC(Sp)+ k EBTCK(ST)

=kgATCk(S.I.)+ﬂi(PA+Pi)+¢9(PA+Pi +PE)

+,8j(PA+Pi+pj)+0(PA+Pi +Pj +PE)+ ) TCk(ST)
keB
And

t ! ! ! ! !
2 TC(51)= 2 TO (S )+TC(8)+TC S+ > TC, (S1)

keB

:kgATCk(ST )+ﬁj(PA+Pj)+6?(PE +PA+PJ-)

+ [ (Py+Pj+P)+0(Pg +Pp +P; +Pi)+k§BTCk(ST')
Therefore,
3 TC(Sp)- £, TC, (8 )=R (5] +0)~P; (4 +0)>0

From the above equation, we can conclude that any sequence of tardy jobs that does not
satisfy (2) can be improved with respect to f,.
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From properties 2 and 3, the optimal common due date and processing sequence for new jobs
can be identified easily once the jobs are divided into an early job set E and a tardy job set T. In
this case, the optimal common due date should be equal to the completion time of the last job in

E. However, notice that there are 2" possible cases of partitioning m new jobs into E and T sets.
Hence it is critical to search ‘good’ E and T sets (those that will lead to a relatively better
objective function value) in an effective way in order to solve the problem efficiently. For this,
we propose and investigate Ant colony algorithm (ACO).

4.Local search for the problem

Let N be an arbitrary permutation of n jobs. For simplicity assume N= {1, 2, ..., n}.
The objective is to find a schedule o =(c(1),5(2),...,a(n)) of the jobs that minimize the total

cost f(o).

First we introduce some neighborhoods for a permutation problem, where the step of feasible
solutions is given by the set of permutations of (n) jobs [10]

e Pairwise Interchange (P1) In a permutation o select two arbitrary jobs ofi) and o(j), i+ j
and interchange them, and |[N(o) =n(n-1)/2.

e Adjacent Pairwise Interchange (API) This is a special case the pairwise interchange
neighbourhood. In a permutation o, two adjacent jobs o(i) and o(i+1),(1<i<n-1) are
interchanged to generate a neighbour o, where |N(o) =(n—1).

4.1 Algorithm AH [5]:

Step (1) (Initialization) in this step a feasible solution o =(o(1),6(2),...,5(n)) is generated
randomly.

Step (2): In this step the initial sequence Tint will be changed by the others neighborhoods and

function values are calculated for every one i. e.
a. For the neighbor PI, have O, and fp, .
b. For the neighbor API, have O pp, and pr, .

Step(3): Now choose min f = {fp| ) pr| 1 fmi}and mino = {GP, 'O ap) ,G,ni}, then

set flni =min f* and O ; =mina*.
Step (4): (Termination) the algorithm is terminated after (500) iterations at a feasible solution.

4.2 Ant colony optimization (ACO) algorithm

Basic definition of ACO The main idea of the ACO is to keep a population or colony of (n)
artificial ants that interactively builds solution by continually applying a probabilistic decision
policy (n) times until a solution is found. Ants that found a good solution mark their path through
the decision space by putting some a mount of pheromone on the edges of the path. Ants of the
next iteration are attracted to the pheromone resulting in a higher probability to follow the

130



J.Thi-Qar Sci. Vol.3 (1) July/2011

already traversed good paths. In addition to the pheromone values, the ants will usually be
guided by some problem specific heuristic for evaluating possible decisions regarding which
direction to take along the way. In ACO algorithm ants have a memory that stores visited
components of their current path. A part from the construction of solutions and depositing of
pheromone the ACO incorporates other methods, pheromone evaporation it causes the amount of
pheromone on each edge to decrease over time. The important property of evaporation is that it
prevents premature convergence to a suboptimal solution. In this manner the ACO has the
capability of "forgetting"” bad solution of the search space [1].

4.3 The Ant colony optimization (ACO)

Ant colony optimization (ACO) is a meta-heuristic uses artificial ants to good solution to
difficult combinatorial optimization problem. It can be described by the following steps:

Step(1) (Initial pheromonetical) The ant colony optimization used here is slightly different from
the traditional ant colony optimization. At the beginning an initial solution is generated by the
same technique described in step (1) of section (4-1). The initial pheromone triad z; (t) will be

the invert of initial solution objective.

Step(2) (Population) Each artificial ant k iteratively and independently generates a complete
solution by selecting a job j to be on the ith position of the sequence. This selection depends on
the pheromone trial z;; (t) and heuristic information ¢; for the our problem is obtained by using

properties 2 and 3 if an early job set E and a tardy job set T are given.. The transition probability
pi'lf that job j is selected by ant k to be processed a position i in the sequence informally given by:

(Tij )A(g ij )w if P og
P =13 ) ) |

0 0.W.

where S’j‘ is the set of unscheduled jobs at position i and A,p are two parameters that weight

the relative importance of the pheromone trial the heuristic information.

Step(3) All solution are evaluated and the best solution is improved by using AH.

Step(4) (Pheromone update) After an ant has selected the next job j a local pheromone update is
performed at element (i, j) of the pheromone matrix according to

Tij (t +1) = (1_ p)Tij (t)"' PT,

For some constant p,0< p <1 and where 7z, = where f(c,,,,) is the value of our

m f(o-rand)
problem when the jobs are ordered randomly. At the end of an iteration of the algorithm once all
the ants have built a solution, pheromone is added to the arcs used by the ant that found the best
tour from the beginning of the trial. This updating rule is called the global updating rule of
pheromone
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Ty = (1_,0)Tij +pAT,
Where 0< p <1 isapheromone decay parameter and Az; equal to

1 : if (i, ])<bestsequence
At =1 bestcost function
0 0.W.

Step (5) The termination condition used here is the same one described in section (4-1).

5. Computational results

In this section, we evaluate the quality of the ACO solutions for minimizing f(d,Sz) by
means of a computational study. The ACO developed in this study is coded it in Matlab R2008a
and runs on a Pentium 1V at 3.33 GHz, 512 MB computer. We tested the ACO on random
problems, and compared the ACO solutions with the optimal solutions obtained using an
enumeration method presented in section (3).We generated random problem instances for
varying problem sizes of m=15, 20 and 25 jobs. The job processing times were selected from a
discrete uniform distribution between 1 and 50. The earliness penalty rates (¢;) were drawn from
a discrete uniform distribution between 1 and 20. Also, a single due date penalty rate (1) of 2 and
a single completion time penalty rate (6) of 1 were given for all m new jobs. We used four types
of tardiness penalty rate (f;) distributions in our experiments. For type A, the tardiness penalty
rates were drawn from a discrete uniform distribution between 1 and 20 (same as the earliness
penalty rates); for type B, the tardiness penalty rates were generated from a discrete uniform
distribution between 11 and 30 (twice as the earliness penalty rates); for type C, the tardiness
penalty rates were generated from a discrete uniform distribution between 41 and 60 (five times
as the earliness penalty rates); for type D, the tardiness penalty rates were generated from a
discrete uniform distribution between 1 and 10 (half of the earliness penalty rates). Note that the
case of type D is somewhat unusual but still possible. Ten problem instances were generated and
solved for each combination of problem size m and tardiness penalty rate types. Results of the
computational study are summarized in table 1. The computational study shows that the
proposed ACO is excellent in both solution quality and computation time.

Table 1(a) Results for type <:A problems

M=15 M=20 M=25
{Optimal | ACO AH Optimal | ACO AH Optimal | ACO AH

23367 | 23367 | 23367 | 43635 | 43635 | 43635 | 65437 | 65513 | 65547
217706 | 21783 | 21831 | 37539 | 37539 | 37530 | 6BVE4 | 68764 | 687764
32542 | 32542 | 32542 | 45553 | 48553 | 45628 | V4376 | 4376 | 14376
29752 | 2R7752 | 2B75Z | 35530 | 3553% | 35530 | 75552 | V5638 | 75688
200132 | 20255 | 200181 | 40819 | 40885 | 40899 | 78984 | VE964 | 78964
35162 | 35162 | 35162 | 35912 | 35512 | 35912 | 66845 | 66845 | 66345
23068 | 23065 | 23z07 | 40278 | 40278 | 40278 | 60.08% | 60217 | 60.236
28,329 | 28320 | 2835 | 32331 | 32331 | 32331 | 5212% | 52128 | 52128
16346 | 16346 | 16346 | 30342 | 30531 | 30436 | 80135 | 800135 | 80204
30912 | 30912 | 30912 | 35604 | 39684 | 35711 | 85651 | 85651 | 85651
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Table 1(b) Results for type B problems

M=15 =20 M=15

Optimal | ACO AH Optimal | ACO AH Optimal | ACO AH

17.073 17.073 17.073 27.864 27.864 27.864 3B.8%2 3b.852 38.8%2
19,512 13,512 13,512 22.867 22.867 22.887 40486 | 40486 40,486
13.065 13,065 13,065 23421 23421 23421 43179 | 43179 43,173
13721 137721 13.201 28.952 28.974 28.982 38.650 38.650 38.650
22.933 22.933 22.933 14.637 14.637 14,637 31.315 31.376 31.382
18.654 18.654 18.654 31727 31727 31727 33757 EXRCH) 33737
16,438 16572 167742 23.544 23813 238739 41615 | 41615 41.615
10,655 10,655 10.655 24,038 24.038 24.038 40,574 | 40,586 40.805
12.912 12912 12.986 23925 23.925 23925 38.811 3881 38.874
19.765 19765 19765 21.303 21.303 21462 34459 34,439 34.43%

Table 1(c) Results for type C problems

M=15 M=20 M=25

Optimal | ACO AH Optimal | ACO AH Optimal [ ACO AH

36126 | 36126 | 36126 | 43650 | 43684 | 43851 | EB4ET | BB4ET | 6E4LET
287709 | 28709 | 28709 | 3628B | 36288 | 36288 | 53865 | S3EBAD | 53865
24225 | 24225 | 24225 | 49362 | 49457 | 49872 | A1749 | A1749 | 617749
AB60E | 38662 | 3B6BET | 3BO026 | 3BO26 | 3BO026 | 53507 | 53643 | 53922
462 | 37462 | 37462 | 46661 | 46661 | 46EEE | SE3LY | SB3ST | 58416
20110 | 30,110 | 30,110 | 42719 | 42719 | 427719 | 65840 | £5.840 | 65840
SR 2T | 27BEZ | 39154 | 30242 | 39231 | ET06E | ET06E | 67.068
28465 | 38465 | 38551 | 44.200 | 44209 | 44209 | EDEBID | AREDE | 60905
JEEI0 | 27370 | 27407 | 32038 | 3220938 | 32038 | 61133 | £1.133 | £1.133
21601 | 31601 | 31601 | 40988 | 40988 | 40888 | 57769 | 57769 | 57804

Table 1(d) Results for type D problems

M=15 M=20 M=25

Optimal | ACO AH Optimal | ACO AH Optimal | ACO AH

34202 | 34202 | 34202 | 64841 | 64902 | &4.977 | 85240 | 82240 | 59240
31153 | 31183 | 31193 | 62252 | 69252 | 65252 | 84631 | 84631 | 84631
41636 | 41636 | 41636 | 78521 | 78644 | 78961 | 75038 | V514 | 75302
44458 | 44483 | 44517 | 69228 | 602z | 6%2ZE | 7143% | 7143% | 71439
40875 | 49952 | 49581 | 64332 | 64332 | 64518 | 83153 | 83153 | 83153
34436 | 34436 | 34436 | VR592 | V9552 | YRA5%Z | V3TMY1 | 7341 | 73788
36,268 | 36268 | 36268 | MAB5Z2 | 4852 | 4852 | 84544 | 54544 | 54544
424177 | 42417 | 42417 | 74.%24 | 74563 | 74961 | 76137 | 76137 | 76639
47084 | 47243 | 47545 | 64305 | 64305 | 64433 | 87341 | 857341 | 87431
491858 | 49189 | 49185 | V9325 | 793zs | 79328 | 81938 | 81935 | 81938
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