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1-Introduction 

      Graph clustering is a useful and important unsupervised learning technique widely studied in 

many researches [1, 2]. The general goal of clustering is to group similar objects into one cluster 

while partitioning dissimilar objects into different clusters. Clustering has broad applications 

including the analysis of business and financial data, biological data, time series data, spatial 

data, and text understanding [3, 4] The grouping is usually based on some similarity measure 

defined for the data elements, so clustering is strongly related to unsupervised learning in pattern 

recognition systems [5]. Graph as an expressive data structure is popularly used to model 

structural relationship between objects. Graph clustering is an interesting and challenging 

research problem which has received much attention recently [4, 5] 

 

1.1 Graph Notation 

 

Let G = (V, E) be an undirected graph with vertex set V = {v1. . . vn}, see figure (1, a). In the 

following we assume that the graph G is weighted, that is each edge between two vertices vi and 
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vj carries a non-negative weight wij ≥ 0, see figure (1, b). The weighted adjacency matrix of the 

graph is the matrix W = (wij)i,j =1,...,n. If wij = 0 this means that the vertices vi and vj are not 

connected. As G is undirected we require wij = wji. The degree of a vertex vi   V is defined as  
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


n

j

iji wd
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A subset A  V of a graph is connected if any two vertices in A can be joined by a path such that 

all intermediate points also lie in A. A subset A is called a connected component if it is 

connected and if there are no connections between vertices in A and A . The sets A1. . . Ak form a 

partition of the graph if Ai ∩Aj =Ø; and A1  . . . Ak = V.  

 

        
     (a)      (b) 

 

 

 

1.2 Graph-based Clustering Algorithms 
     A graph-based clustering will first construct a graph or hypergraph and then apply a 

clustering algorithm to partition the graph or hypergraph. A link-based clustering algorithm can 

also be considered as a graph clustering, because we can think of the links between data points as 

links between the graph nodes. There are a number of graph-based clustering algorithms; some 

of them are listed below. 

 

1.2.1 CACTUS algorithm 

      CACTUS (CAtegorical ClusTering Using Summaries) algorithm is developed by Ganti et el. 

(1999), the interattribute and intra-attribute summaries of the database are constructed and then a 

graph called the similarity graph is defined according to those summaries. Finally, the clusters 

are found with respect to those graphs.  

 

The CACTUS algorithm 

1.Compute the interattribute and intra-attribute summaries from the database {summarization    

          phase} 

2.Analyze each attribute to compute all cluster projections on it, and then synthesize               

         candidate clusters on sets of attributes from the cluster projections on individual attributes   

        {clustering phase} 

3.Compute the actual clusters from the candidate clusters {validation phase} 

Figure (1) major kinds of Graph 
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1.2.2 ROCK algorithm  

ROCK (RObust Clustering using LinKs) algorithm is developed by Guha et al. (2000), and 

is an agglomerative hierarchical clustering algorithm that employs links to merge clusters. 

ROCK uses link-based similarity measure to measure the similarity between two data points and 

between two clusters  

ROCK Algorithm 

Require: n: number of data points; D: data set; 

1:    for i = 1 to n-1 do  

2:     for j = i+1 to n do 

3:        Compute link(pi,pj) 

4:     end for 

5:    end for 

6:    for i = 1 to n do 

7:     build a local heap q[i] that contains every cluster Cj such that link(Ci,Cj) is nonzero         

                     {at first, each data points forms a cluster} 

8:    end for 

9:  Build a global heap Q that is ordered in decreasing order of the best goodness                    

           measure and contains all the clusters 

10:  repeat  

 

2-Related Works 

      In his Ph.D. thesis, Van Dongen [9, 2000] has presented the theoretical and practical 

applications of Markov Clustering (MCL) algorithm. Chris Biemann [12, 2005] has used a 

different modification of MCL in Natural Language Processing (NLP) applications. H. S. Shon 

et al [13, 2007] proposed a clustering approach using MCL algorithm for analyzing microarray 

data, and they provided a detailed explanation of their new clustering algorithm; Chinese 

Whispers; which uses the only the strong points in  Markov clustering algorithm. The Chinese 

Whispers is given below: 

 

Initialize: 

For all vi in V: class(vi)=i; 

While changes: 

For all vi in V, randomized order: 

Class(v)=highest ranked class 

in neighborhood of v; 

End 

      In [5, 2007], In this survey an overview the definitions and methods for graph clustering are 

given, that is, finding sets of “related” vertices in graphs. They review the many definitions for 

what is a cluster in a graph and measures of cluster quality. Then they present global algorithms 

for producing a clustering for the entire vertex set of an input graph, after which they discuss the 

task of identifying a cluster for a specific seed vertex by local computation. 
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3-Markov chains and Random walk 

      A Markov chain is a stochastic process in which future states only depend on the current 

state, not the past, taking values from some countable state space. The probabilities for moving 

to another state from current state form the transition matrix of the Markov chain. In general, 

each Markov chain, independent of how the transition probabilities are defined, can be 

represented by a weighted directed graph where each state corresponds to 

a vertex, each edge corresponds to a transition that has nonzero probability and the edge weight 

is the probability in question [5]. For an unweighted graph, when one moves from one vertex to 

another choosing a neighboring vertex uniformly at random, the transition matrix that results is 

the normalized adjacency matrix D(G)
-1

A(G) of the graph G. This means that the probability of 

moving from vertex v to w is simply: 
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Such a walk is called random, blind, regular or simple, as it is but one of many possible 

definitions of walks in graphs. The first passage time from state j to state i is the time step when 

the chain first visits state i when started at state j. The absorption time from state j to state i is the 

first passage time in a modified chain, where state i is made into an absorbing state by removing 

all of its outbound transitions. The spectrum of the transition matrix can be used to evaluate the 

mixing time of the chain, which is the time it takes for the chain to reach its stationary 

distribution. The stationary distribution is a distribution that no longer changes over time as more 

and more transitions are being performed. It defines for each state the probability that the walk is 

at that state if a single observation is made after the walk has been run for a sufficiently long 

time. The stationary distribution can be obtained by computing the left eigenvector 

corresponding to the largest eigenvalue of the transition matrix [6]. MCL is based on Markov 

chain model both in theory and practice [8]. The transition matrix of the Markov chain could be 

converted into a proper column-stochastic matrix; that is, a matrix with nonnegative elements 

(since they values represent probabilities), and the elements of each column sum up 1, see figure 

(2). 
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Figure (2) Column-stochastic matrix 
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4-The Proposed Method 

4.1-Enhanced Markov Clustering (MCL) Algorithm 

      The MCL employs the normalized adjacency matrix of G, i.e. M (G) = D (G)
-1

A (G) where A 

(G) is the adjacency matrix and D(G) the diagonal matrix of vertex degrees. The idea behind 

Markov Clustering (MCL) is that a “random walk that visits a dense cluster will likely not leave 

the cluster until many of its vertices have been visited.” Rather than actually simulating random 

walks, MCL iteratively modifies a matrix of transition probabilities. Starting from M = M(G) 

(which corresponds to random walks of length at most one), the following two operations are 

iteratively applied:  

1. Expansion, in which M is taken to the power e N>1 thus simulating e steps of a 

random walk with the current transition matrix (Algorithm 1, Step 1) 

2. Inflation, in which M is re-normalized after taking every entry to its r
th

 power, r   R
+
. 

(EMCL Algorithm, Steps 2–4). 

Note that for r > 1, inflation emphasizes the heterogeneity of probabilities within a row, while 

for r < 1, homogeneity is emphasized. The iteration is halted upon reaching a recurrent state or a 

fixpoint. A recurrent state of period k  N is a matrix that is invariant under k expansions and 

inflations, and a fixpoint is a recurrent state of period 1. It is argued that EMCL is most likely to 

end up in a fixpoint. The clustering is induced by connected components of the graph underlying 

the final matrix. Pseudo-code for EMCL is given in Algorithm. Except for the stop criterion, 

EMCL is deterministic, and its complexity is dominated by the expansion operation which 

essentially consists of matrix multiplication. The enhanced MCL clustering algorithm is running 

in approximate steps of 88% compared to the steps of the ordinary MCL clustering algorithm. 

This is achieved by running the ordinary MCL clustering in 100 steps and compares the results 

of each step with all the steps obtained by running the enhanced MCL. We found that the results 

reached in step 44 when implementing ordinary MCL clustering are reached in step 40 when 

implementing enhanced MCL. The reason of this enhancement is the difference matrix DM use 

which leads to the decrease in number of steps required to reach the same results (steps 4.1 and 

4.2).    

Algorithm: Enhanced Markov Clustering (EMCL) 

    Input: G = (V, E), expansion parameter e, inflation parameter r, empty matrix called difference 

matrix DM. 

Begin    

     M ← M(G) 

     While M is not fixpoint do 

1        M ← M
e 

2        for all u  V do 

3            for all v  V do Muv ← M
r
uv 

  

4.1      DM=abs[(Muv)i-(Muv)i-1] 

4.2    If (DM)>threshold then 

    (Muv)i = (Muv)i+ DM  

4             for all v  V do Muv ← 
Vw

uw

r

uv

M
M
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 H ← graph induced by non-zero entries of M 

C ← clustering induced by connected components of H 

End 

The fixpoint mentioned in the algorithm represents the recurrent state that the matrix should 

reach after a finite number of steps . 

 

4.2-Results 

     We have implemented EMCL algorithm in Delphi language and we set the proper factors of 

inflation, matrix and threshold. The inflation factor that we have chose concisely,   
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Figure (3) Adjacency matrix M of the graph. 

 

Figure (4) Adjacency matrix M after two iterations of the algorithm. 
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Figure (4) Adjacency matrix M after four iterations of the algorithm. 

 

Figure (5) Adjacency matrix M after 8 iterations of the algorithm. 
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4.3-Complexity Analysis of EMCL 

 

      The expansion step of EMCL has complexity O(n
3
), assuming some small bound on the 

expansion exponents e. The inflation has complexity O(n
2
). However, the matrices Mi are 

generally very sparse, or at least the vast majority of the entries are near zero. Pruning in EMCL 

involves setting near-zero matrix entries to zero, and can allow sparse matrix operations to 

improve the speed of the algorithm vastly O(n
3
), where n is the number of vertices. n

3
 cost of 

one matrix multiplication on two matrices of dimension n. Inflation can be done in O(n
2
) time. 

The number of steps to converge is not proven, but experimentally shown to be ~10 to 100 steps, 

and mostly consist of sparse matrices after the first few steps. Speed may be improved through 

pruning. Inspect matrix and set small values directly to zero (assume they would have reached 

there eventually anyways). Works well when the diameter of the clusters is small. 

(Nonhomogeneous distributions of weight). 

5-EMCL and RRW 
      The RRW is another graph clustering algorithm in which every cluster is stored and the 

clusters that overlap more than the threshold are later compared, and the lower ranking clusters 

will be removed, in EMCL algorithm, the clusters are normally clustered but in case of repeated 

overlapping, the EMCL algorithm may fail in finding the clustering of the graphs but this is 

rarely occurred, so in some situations the RRW algorithm maybe better than EMCL algorithm. 

6-Conclusion Analysis of EMCL 

The EMCL algorithm scales well with increasing graph size. Works with both weighted and 

unweighted graphs. Produces good clustering results. Robust against noise in graph data. 

Number of clusters not specified ahead of time, but can adjust cluster granularity with 

parameters.Can not find overlapping clusters (in general). Not suitable for clusters with large 

diameter. 

Figure (6 ) the output of the enhanced MCL algorithm (the clusters). 

 



 

 
 

115 

J.Thi-Qar Sci.                       Vol.3 (1)                       July/2011 

 

References 
[1] Ulrik B., Marco G., Dorothea W. (2003). “Experiments on Graph Clustering”, Springer-Verlag Berlin 

Heidelberg, pp. 568-579.   

[2] Andrew D. K., , (2004) “Graph Clustering with Restricted Neighborhood Search”, MSc.  Thesis, 

Dept. of computer science, University of Toronto. 

[3] Pierre L., Etienne B., Christophe A., , (2008) “Bayesian Methods for Graph Clustering”, Research 

Report No. 17. 

[4] Olena M., (2007) “Computing Lexical Chains with Graph Clustering”, Proceedings of the ACL 2007 

Student Research Workshop, pp 85–90. 

[5] Schaeffer S. E., (2007). “Graph clustering”, C O M P U T E R S C I E N C E R E V I EW 1, Elsevier, 

pp 27-64 . 

[6] G. Gan, C. Ma, J. Wu, , (2007).   “Data Clustering: Theory, Algorithms, and Applications”, SIAM, 

Philadelphia.  

[7] L. R. Rabiner, , (1989) “A Tutorial on Hidden Markov Models and Selected Applications in Speech 

Recognition,” Proceedings of the IEEE, Vol. 77, No. 2, pp. 257-286. 

[8] Andreas Noack, (2007). ” Energy Models for Graph Clustering”, Journal of Graph Algorithms and 

Applications, vol. 11, no. 2, pp. 453-480 . 

[9] Stijn Marinus van Dongen, , (2000).  “Graph clustering by FLOW SIMULATION”, PhD. Thesis, 

University of Utrecht, Holland.  

[10] Lars Elden, , (2007). “Fundamentals of Matrix Methods in Data Mining and Pattern Recognition”, 

SIAM, Philadelphia. 

[11] Ulrike von Luxburg, , (2006). “A Tutorial on Spectral Clustering”, Max Planck Institute for 

Biological Cybernetics. 

[12] Chris Biemann, , (2005). “Chinese Whispers: an Efficient Graph Clustering Algorithm and its 

Application to Natural Language Processing”, University of Leipzig, NLP Department, 

unpublished. 

[13] H. S. Shon, S. Kim. Chung, S. Rhee, K. H. Ryu, (2007). “Clustering Approach Using MCL 

Algorithm for Analyzing Microarray Data”,International Journal of Bioelectromagnetism,pp 65-66  

[14] Bose N. K., Liang P., , (1996). “Neural Network Fundamental with Graphs, Algorithms and 

Applications”, McGraw-Hill. 
 

 

 

 

 

 

 

 

 

 المطورة MCLخوارزمية العنقدة 

 كاظم مهدي هاشم                                                مؤيد عبد هاني

 قسم علوم الحاسبات –كلية التربية  -جامعة ذي قار

 
 الخلاصة

ماااا عأاّ معاإٔ  إن الٍدف مه عىقدة بٕاوات المخططات ٌُ تقسٕم العقد فٓ المخططاات البيٕا ة إلاّ عىا ٕاد مخ أعا   ع      

مخ أعاا  ردة اا   ةتياااد العقاادة َال تاااَة الم قااابًع إن تقىٕااات عىقاادة المخططااات معٕاادة فاآ  ر قاااف المتااامٕ  الب ٕعاا  فاآ 

المخططاتع فٓ ٌذا اليحث,  مىا ب قدٔم خُاةزمٕ  لعىقدة المخططات, ٌاذي الخُاةزمٕا  تع ماد خُاةزمٕا   مااةرُف لأعىقادة 

Markov Clustering   ِ َال ٓ تس عمل خاصٕ  الأوسٕاب اليٕاوٓ الأحصائٓع  ٕم ال صاعد, المصعُف  َ ٕم  الع ي   ا

إلحا ٍااا بط ٔقاا  تماامه م ئم ٍااا لعماال الخُاةزمٕاا ع بعااد للااي تاام تقاادٔم ال حإٔاال الىماا ْ   يااات إن خُاةزمٕاا  ماااةرُف 

َ ُا تقابً بٕه العقاد ٔمامه للايع تممه الُصُل إلّ عىقدة م الٕ  فٓ حال   Enhanced EMCL-Clusterالمطُةة 

 رذلي تمت مقاةو  خُاةزمٕ  العىقدة المق  ح  م  خُاةزمٕات العىقدة اللأخ ِع
 


