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ABSTRACT

This paper provides a numerical simulation for determining the complex propagation

constants of integrated optics waveguide. The waveguide under consideration may
consist of any number of layers with complex indices due to gain and loss. A general-
purpose mode solver MAPLE program has been developed to implement the transfer
matrix method, and then it applied to solving the multilayer waveguide dispersion
equation in complex plane. Additionally, our program can be used to determine the
electromagnetic mode structure including modal power, spatial distribution, mode size
parameters, and the position of the modal peak power. Therefore, all necessary

parameters for a wide range of laser devices can be calculated.
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INTRODUCTION

Multilayer planar waveguide structures have been widely used in the implementation

of variety of optical devices including distributed feedback lasers [1], TE-TM converters
[2], waveguide polarizers [3], Bragg reflectors [4], directional couplers [5], antiresonance
reflecting optical waveguide (ARROW) structures [6], broad-area semiconductor lasers
[71. [8].

In order to optimize the performance of integrated optical devices using such
waveguides, it is important to know its propagation characteristics and the transverse
modal power distribution. Since, analytical solutions does not exist for such structures,
one may uses either approximate methods such as the perturbation method [9], the WKB
method [10], variational method [11], graphical methods [12], mode-matching method
[13], and Cauchy integration method (CIM) [14]-[17] or numerical methods [18], [19] to
solve the wave equation.

The perturbation method was used for lossless 5-layer structure, lossy 4-layer structure,
and for a metal-clad waveguide to determine the propagation constants and the resulting
propagating mode profiles. The previous technique can not be applied successfully and
then can not easily be extended to multilayer structures, since their approach is analytic
and the formulas involved become cumbersome.

Numerical methods, that can efficiently and accurately solve the wave equation for the
propagating modes, are thus of obvious importance since they are used as a basic tool in
the design technique.

Traditional numerical zero-search algorithms such as the downhill method [20], [21],
Newton's method [22] and the one-dimensional scan method in the complex plane [23]
needs an initial guess value close to the actual root. Therefore, these methods are not
efficient and reliable, especially for a general-purpose mode solver.

Among these methods, transfer matrix method (TMM) [24], [25] is one of the primary
tools for multilayer waveguide analysis. The theory of TMM can easily generate the
dispersion equation for TE and TM modes supported by such structures in a
straightforward manner. Multilayer waveguide can consist of any combination of lossless

and lossy (dielectric, semiconductor, metallic) and active (including uniaxially
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anisotropic quantum well) layers. The guided mode propagation constants of the structure
correspond to zeros of the dispersion equation.

A program was needed for solving the wave equation for guided modes that consist of
many layers with complex refractive indices. The imaginary part of refractive index
describes gain and loss in the layers. The program developed should be run on a personal
computer within an acceptable time and accuracy.

In this paper, we develop a MAPLE program for the solution of the characteristic
equation in the complex plane numerically corresponding to TE and TM modes of a
multilayer planar optical waveguide. The TMM based program is extended to compute
the mode field profile and its evolution, mode size, and its peak position. In section 2, we
will discuss the necessary theory of the method, and in section 3, we will present some
numerical results to show the validity of our calculations. Conclusions will drown in

section 4.
Transfer Matrix method (TMM)

Maxwell's curl equations for source-free, time-harmonic fields in anisotropic media

are.
VxE=—jou,H (1a)

VxH = Joes e E (1b)
Where [, is the free space permittivity, (1 is the angular frequency, and [, is a relative
permittivity.
Consider a planar multilayer waveguide as shown in Fig. 1. For mode propagating
along the + Z direction in the homogeneous i-th layer, the field components Ey, E;, Hy
will vanishes for TE mode, whereas Hy, H,, E, will vanishes for TM mode. With these

assumptions the wave equation for the i-th layer reduces to

62

TR0 ) 0=0, x <x<xq @
e _[E,. TE
Where y = Hy’ ™ °

120



J. Thi-Qar Sci Vol.1 (4) May/2009

(O=[re+j0im IS the complex propagation constant of the mode, k,=201/11 is the free space
wavenumber. The layers have complex refractive indices n=ne+jnin, where the
imaginary part is due to gain or loss. The effective index nes and the absorption

coefficient [wg are given, respectively, by [24]

Nett=re/ o (38.)
Owe = 2Uim (3b)

The general solution of the wave equation in each homogeneous layer (i) is well known
Fy.i (%) = A exp(x (X — %;)) + B; exp(—x; (X — X;)) (4)

Where &; = '\/ﬁz - kgni2 , Aj and B; are the complex field coefficients that vary from

layer to layer, and x; is the position of the interface between layer i and i+1. By imposing

the continuity conditions of the field and its derivatives for each interface, it is easy to

find [24], [26]
B .+1 -
B S A
! B; ®)

_Bi +1
Where
_ _ _ _
(1+ ni —'JEXP(Kidi) (1— ni —Ijexp(_’(idi)
T _1 i+1 Ki+1
2 K K
(1— i —Ijexp(’(idi) [1+ i —IJeXp(_Kidi)
| Kin Kin |

Where d; is the i-th layer thickness and

(1L TE
" 02y 0,

™
One can relate field coefficients in the cladding (A and B.) with the coefficients in the

substrate (As and Bs) as follows:

o) 7ls ]

t, t
Where T =T, ...T,T,T, = [t“ 12} and N is the total number of layers.

21 55

(6)
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For the guiding modes, the fields should be evanescent in the cladding and the

substrate layers, so A:=0 and Bs=0 that results the characteristic equation [24]

() =0 ™
For multimode waveguide, there is a z-dependent phase difference between modes due

to modal dispersion. As a result the combined mode field for multimode waveguide is

given by superposition of all the guided mode fields as follows [25]

M
I:ytotal (X’ Z) - Z—ll Fym (X) eXp(_ J/Hm Z) (8)

Where M is the total number of modes.

Numerical Results and Discussions

A program has been developed using MAPLE symbolic computational language to
handle the transfer matrix method. The built-in floating point arithmetic root finding
method through fsolve function to determine the complex roots of the characteristic
equation (Eq. 7) that corresponds to the propagation and loss constants directly without
needing to find the analytical derivatives for the characteristic equation as required in
CIM [12]-[15].

In this section, we present some numerical results to test the validity of our program.
We have computed the propagation and loss characteristics, the modal field profile, the
position of power maxima, and the mode size of TE and TM modes that propagates in
multilayer planar optical waveguides.

Our program was applied to 6-layer lossy waveguide. The typical values of the various
parameters are assumed as follows [17]: ng=3.172951, n;=3.16455, n,=3.22534,
n3=3.39583, n,=3.5321-j0.08817, ns=3.39614, ne=3.38327, n.=1.0, d;=0.60Im,
d,=1.60m, d3=0.5180m, d,=0.60m, ds=0.20m, ds=0.10m, 0,=1.52300m, which
corresponds to the multi-mode region. The results are perfectly agree with those reported
in [17] as indicated in Table 1.

The dispersion equation of the multilayer planar waveguide (Eq. 7) has been
numerically solved to calculate the effective index and loss of the guided modes and
plotted as a function of k, for TE and TM modes as shown in Figs. 2 and 3, respectively.
Upon normalizing the time-averaged power per unit length in the lateral direction, the
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field profile (Eq. 4) of each guided mode and its evolution (Eq. 8) can be obtained by
successively applications of the transfer matrix to the field at the reference interface
plane. Having found the roots, the coefficients A; and B; of each layer can be calculated
from Eq. 6. A; is equal to zero and B; has to be determined. Since all coefficients are
proportional to B; , B; reflects the normalization, which has been accomplished
according to Ref.[25].

2 2
In Figs. 4 and 5, we have plotted the modal power profiles ‘Ey‘ and ‘Hy‘ as a

function of x for TE and TM modes for k,=2.7 and 4.0 [m™, respectively. Such plots are
extremely useful in computing the power peak position as a function of k, (see Fig. 6) and
mode size which is defined as the value of x where the power value reduces to 1/e of its
peak value (see Fig. 7). The modal spatial power distribution are also useful in overlap
integral calculations for estimating the efficiencies in electrooptic or acoustooptic
interactions using such waveguides, coupling efficiency calculations, etc.

Mode field evolution of this structure can be determined along its propagation
direction using Eq. 8 and plotted for TE- and TM-modes for different values of k, as
shown in Fig. 8. The propagation constants are tabulated in Table 2. The calculations are
repeated in the case of absence the imaginary part of the refractive index (lossless case)
for comparison purposes and also shown in the same figure. The waveguide support three
modes with effective refractive index (ne) as shown in Table 2 for the complex case and
in Table 3 for the real case.

Also, Figs.8 shows that the lightwave are not coupled between the layers as it
propagate along the structure because of the attenuation that it suffers due to the
waveguide loss which uses lossy materials. Whereas, for lossless case, the coupling
between the different modes are very effected on the power evolution. Moreover, the
coupling lengths between the different propagating modes can be estimated directly from

this figure.
Conclusions

In this paper, we have presented a general-purpose mode solver MAPLE program to
analyze multilayer planar optical waveguide. We have used TMM and some numerical

methods in the analysis. The method not only converges rapidly but is also capable of
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giving results of specified accuracy. The program can be used in effective index and loss,

field or power profiles, and mode size calculations

Table 1. Complex propagation constants of guided modes in a six layer planar
optical waveguide.

o Present work Ref [17]
B/, B, B, B,
TE, | 3460829693510364 | — 0.072663342917385 | 3460829654 | — 0.07266334252
TE; | 33167078020463705 | — 0.023275817588124 | 3316707802 | — 002327581759
TE,; | 32085554287344547 | — 0.012782067986634 | 3208555428 | — 0.012782067%9
TE:; | 31954905933965134 | — 0.012585955654403 | 3195490593 | — 0.01258595565
TM, | 3.4553316045512017 | — 0.0705938441859186 | 3.455331605 | — 0.07055384419
TM; | 3.3106349364087075 | — 0.023388566475009 | 3310634936 | — 0023388566548
Th> | 32080266212178024 | — 0.006483752441067 | 3208026621 | — 0.00648375244
TMz | 3.1818980284442880 | — 0.01579829719004 | 3181898028 | — 0.01579829719

Table 2. Complex propagation constants (f/k,) of guided modes for different wavenumbers.

Mode

K;=2.7 1!

i=3.4 1!

=40 1!

TE,

3418508020 1 0.061935237

3.443615759 -1 006208357 3

3455475409 - 0071970731

TE;

3431584960 -1 0.013057341

3.279635564 -1 0018475513

3311244455 - 0022355727

TE;

31TATS6503 -1 0.005507 340

3197361028 -1 0.003027743

3207205713 - 0.00F 772636

M,

3404934077 - 0.057347714

3435062986 - 0065123524

345236794 -1 0.06972 5094

TM;

3220435918 -1 0012377336

3269908521 -1 0.019447934

3304622318 - 0022667265

TM;

3171668419 -1 0.005752703

3195644700 -1 0.003044739

3206415970 -1 0.004951341
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Table 3. Propagation constants (8/k,=nes) of guided modes for different wave-
numbers for the real case.

Mode K,=2.7 pem-l K,=3.4 el K,=4.0 pen!
TE, 342286608 10354166522 3.4474052236015813512 | 3.4618876371422050950
TE; 323107815036 58006355 3.3803754622600072804 | 33141704678745249900
TEz - 3.1978754361028033065 | 3.2117608765242057352
T, | 3.4087200415636334068 3.4387602181249710447 | 3 4558038439970183340
TM; | 3.2205563130304075898 3.2608288571315257506 | 3.3061495419363857672
TM; - 3195T08TRTE663T50962 | 3 2084569800733149205
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Fig.1. index profile for 6-layer planar optical waveguide.
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Fig. 8. The evolution of the TE and TM modes in 6-layer planar waveguide
for three different values of k,=2.7, 3.4 and 4.0 gm™. The figure is plotted for
the case of complex and real propagation constant.
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