On Student Comprehension For There Year Courses In Mathematics Department

Hadeel Salim AL-Kutubi
Inaam Razzaq AL-Saiq

Department of Math- College of Science-Kufa University

Abstract

In this paper, we present the significant difference between the level of student comprehension for these year courses and for all student of mathematical department,college of science, Kufa university .Moreover to find out the effect of scientific, personality, ability of evaluation and ability of communication To have the goal ,we used some statistical methods like experimental design,correlation and regression analysis.

1-Introduction

We present in this study the significant difference between for there year courses and for all student of mathematical department in College of Science ,Kufa University .And find the effect of scientific ,personality , ability of evaluation and ability of communication.
First we present the theoretical part about statistical methods like experimental design, correlation and regression analysis. In experimental design, we present the significant difference the level of student comprehension between all courses in each stage in mathematical department and then find the best from this courses.
In regression analysis ,we find the effect of scientific,personality,ability of evaluation and ability of communication in student comprehension. But in correlation,we present the positive correlation between all variable like scientific, personality,ability of evalution and ability of communication.
Finally, we used statistical program,that is statistical to have the goal.

2-Material and Method

1-2 Linear Regression
The statistical procedure for finding this best fitting line is called the method of least squares and the line is called the regression line. The formal derivation of this procedure, which requires differential calculus, is presented in advanced statistical texts.
First, it is necessary to introduce some useful new notation:

1. $\left(X_{i}, Y_{i}\right)_{\text {=ith pair of observations }}$
$2-\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)=\sum X Y-\frac{\left(\sum X\right)\left(\sum Y\right)}{n}=\sum x y$
$3-\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\sum Y^{2}-\frac{\left(\sum Y\right)^{2}}{n}=\sum y^{2}$
$4-\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\sum X^{2}-\frac{\left(\sum X\right)^{2}}{n}=\sum x^{2}$
The sample regression line is written $\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X$
where the least squares estimates

$$
\hat{\boldsymbol{\beta}}_{0} \text { and } \hat{\beta}_{1} \text { are }
$$

$$
\hat{\beta}_{1}=\frac{\sum x y}{\sum x^{2}} \text { and } \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
$$

The values $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are calculated from a sample of observations from the entire population of interest and are estimates of the"true" population values" β_{0} and β_{1}.As was the case with \bar{Y} and s,the values $\hat{\beta}_{0} a n d \hat{\beta}_{1}$ are subject to sampling variation and therefore may vary from sample to sample.the value \hat{Y} obtained for a given X is the predicted mean of the population of all possible Y values that could occur at the given value X . Just as there is a sample standard deviation associated with each \bar{Y},there is a standard deviation associated with the regression line and \hat{Y} This quantity, denoted by
$\mathrm{S}_{\mathrm{y}, \mathrm{x}}$ to signify regression , is called the standard error of the estimate it is given by

$$
s_{y . x}=\sqrt{\operatorname{SSE} /(n-2)}
$$

Where n is the number of pairs of observations and SSE (sum of squares for error)Is defined as

$$
S S E=\sum(Y-\hat{Y})^{2}
$$

The quantity $\mathrm{s}_{\mathrm{y}, \mathrm{x}}$ is seen to be analogous to the standard deviation computed. It measures the "average" deviation of the observed values(Y)from the values (\hat{Y}) predicted by the regression line. Although we will not test hypotheses or compute confidence intervals for an estimate \hat{Y}, the standard error (S.E.) for \hat{Y} at a given X value would be.
S.E. $(\hat{Y})=s_{y . x} \sqrt{\frac{1}{n}+(X-\bar{X})^{2} / \sum x^{2}}$
${ }_{\text {We find }} S S E=\sum(Y-\hat{Y})^{2}$
Fortunately, there is a computationally equivalent formula for SSE which is both more convenient to use and gives an insight into the geometric meaning of the regression
line.This form is

$$
S S E=\sum y^{2}-\hat{\beta}_{1} \sum x y
$$

The variation about the regression line, as measured by SSE, is strictly less than the Y variation, as measured by $\sum y^{2}$, whenever $\hat{\beta}_{1} \neq 0$. Consequently, whenever there is a linear relationship between X and Y we can compute a standard error based on this relationship
which is smaller than the simple standard error based on Y values alone. There is clearly no relationship between X and Y.It is for this reason that the sample regression line must be evaluated to determine if it adequately describes the relationship between the variables X and Y.This may be accomplished by testing the null hypothesis that the true slope β_{1} of the population regression line is equal to zero.
The most important inference to be made concerns the "true" value of the slope, β_{1} of the population line. If the true population β_{1} is zero, then the value of Yin on way depends on the value of X.In other words, indicates that no linear relationship exists between X and Y .

It is first necessary to determine the standard
error of

2-2 Correlation Coefficient

Often in statistical analysis it is desirable to determine the strength of the relationship between the variables under study.The most widely used measure of this degree of
association between Y and X is provided by r , the coefficient of correlation. The formula
for r is .

$$
r=\frac{\sum x y}{\sqrt{\sum x^{2} \sum y^{2}}}
$$

The values of r lie in the interval $-1 \leq r \leq+1$ with a "large" value of r (either positive or negative)indicating a strong relationship between X and Y.A negative value of r indicates that high X values are associated with low Y values,or,low X values associated with high Y values .A positive r,on the other hand, indicates that high values of X are associated with high values of Yand low values of x are associated with low values of Y.

A further explanation of r may be seen by comparing it with $\hat{\beta}_{1}$, the slope of the regression line.In the formulas for r and $\hat{\beta}_{1}$, numerators are identical (the denominators for both will always be positive); therefore, r and $\hat{\beta}_{1}$ and will have the same sign. When the slope of the line is negative, the correlation is also negative thus indicating a negative ,or inverse relationship between Y and X. Similarly, a positive slope and a positive correlation indicatea direct relationship between variables.Further, if an exact positive relationship exists between Y and X (i.e.,all points lie exactly on the regression line), then the value of r is +1 .An exact negative relationship will yield an r of -1 .

When $\hat{\beta}_{1}=0, r=0$ and hence no linear relationship between Y and X is indicated.As was the case with $\hat{\beta}_{1}$, the value r is the sample estimate of a true true population correlation value denoted by ρ and is subject to sampling variation. It is of interest therefore to test the hypothesis that the true population correlation equals zero.A value of $\rho=0$ indicates that there is no linear association between the variables under study. The test statistic
for
testing
$H_{0}: \rho=0$ is
$t=r \sqrt{\frac{n-2}{1-r^{2}}} \quad, \quad \mathrm{n}-2$ degrees of freedom
A significant r indicates that the Y values are meaningfully related to the X values. A simpler method for testing $\rho=0$ is by comparing the value of r with values in Table(Critical values of the correlation coefficient for different levels of significance).If the absolute value of r exceeds the tabulated value, then r is said to be significant at the given α level In the interpretation of both the regression line and the correlation coefficient, there are several important precautions that must be considered.
The first of these is that the relationship between variables must be linear. A slope (β_{1}) or correlation coefficient (ρ) equal to zero does not imply that no relationship exists between the variables.It simply implies that there is no linear relationship between the variables. The second precaution that must be exercised in the interpretation of linear regression and correlation concerns the danger of making inferences beyond the range of actual observations upon which the analysis is based.

The third precaution that must be considered is that correlation does not necessarily mean causation.A significant correlation indicates that the two variables X and Y tend to be associated.Except for highly controlled studies in which all extraneous factors have been removed, it is impssible to determine which variable influences which ,or even whether either of the variables is influencing the other directly.Often, a third variable may be affecting the relationship and "causing" both X and Y to vary together.

3-2 Design of Experiments

1-3-2 Completely Random Design

The completely random design(CRD).In this design,experimental units are simply chosen at random from the population to which inferences are to be made. The total sample is randomly divided into groups and the different treatments or conditions under study are then applied to the groups, one treatment or condition to a group.If the treatments differ from each other then the various treatment groups will have different mean values at the end of the experiment.
For the completely random design the general method is the analysis of variance. The process of using the ANOVA (analysis of variance)is best learned by studying examples. In a completely randomized design there are k treatments, each of which is assigned at random to a group of experimental units. The null hypothesis is whether the treatment means are all equal.Symbolically, $H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{k}$ which is tested to see whether the treatment groups are really subsamples from the same population $\left(\mathrm{H}_{0}\right.$ true $)$ or whether they samples from different populations $\left(\mathrm{H}_{0}\right.$ false $)$.
In a completely randomized design each experimental unit has an equal and independent chance of receiving any one of the treatments.The basic assumption underlying this design is that the observed values in any one group represent a random sample of all possible values of all experimental units under that particular treatment.Further,we assume that the responses are normally distributed about the treatment mean and that the variation among observations treated alike is identical for all treatments. Calculations from analysis of variance techniques are customarily displayed in an ANOVA table.Definitions and computing formulas for the terms shown are discussed below.

Table 1: ANOVA for the completely randomized design

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Squares	F
Among treatments	$\mathrm{k}-\mathrm{l}$	SST	MST=SST/(k-l)	MST/MS E
Within treatments	$\mathrm{N}-\mathrm{k}$	SSE	$\mathrm{MSE}=\mathrm{SSE} /(\mathrm{N}-\mathrm{k})$	
Total	$\mathrm{N}-1$	SS		

The total sum of squares(SS) is the total of the squared deviations of the observations from overall mean of the data.It is simply the numerator in the familiar formula for calculating the variance of allthe observations considered as a single group.Symbolically,
$S S_{\text {Total }}=\sum_{a l l} Y^{2}-\frac{\left(\sum_{a l l} Y\right)^{2}}{N}$
where $\quad \mathrm{N}=\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+\ldots . \mathrm{n}_{\mathrm{k}}, \quad, \mathrm{k}=$ number of treatments

For convenience of calculations, the term

$$
\frac{\left(\sum_{\text {all }} Y\right)^{2}}{N}
$$

Is given a special name.It is called the correction factor and is used in several calculations.Since the within treatments variation is the variation associated with observations treated alike, it is the variation associated with experimental or random error.As would be expected,to obtain a numerical value for this within group variation, we obtain a measure of the variation within each treatment group and combine these variance contributions to form a pooled estimate. Recall from the pooled t situation that the pooled variance estimate was

$$
s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
$$

where s_{1}^{2} ands s_{2}^{2} were the variances of two samples.For the k sample case the logical extension to obtain the pooled estimate of within group variation is

$$
s_{w}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\ldots+\left(n_{k}-1\right) s_{k}^{2}}{n_{1}+n_{2}+\ldots+n_{k}-k}
$$

This may be rewritten $s_{w}^{2}=\frac{S S E}{N-k}=M S E$ (mean square error) since $n_{1}+n_{2}+\ldots+n_{k}=N$, the total number of observations. This formula is genrally not used for computations unless it is desired to have available the standard error for each treatment group.The computational formula for SSE is given by

$$
S S_{\text {Within }}=S S E=\sum_{\text {all }} Y^{2}-\sum_{i=1}^{k} \frac{\left(T_{i}\right)^{2}}{n_{i}}
$$

The final source of variation to be calculated is the among treatments variation (the failure of the k treatment means to be alike).The computational formula is given by

$$
S S_{\text {Among }}=S S T=\sum_{i=1}^{k} \frac{\left(T_{i}\right)^{2}}{n_{i}}-C F
$$

A final calculational short -cut may be developed by utilizing the relationship

$$
S S_{\text {Total }}=S S_{\text {Within }}+S S_{\text {Among }}=\mathrm{SSE}+\mathrm{SST}
$$

In practice,SSE is rarely computed directly.Rather it is obtained by subtraction,that is,

$S S E=S S_{\text {Total }}-S S T$

The general procedure for computing the mean square column for the ANOVA is to compute first the sum of squares and enter in the ANAVA table; then compute the degrees of freedom and enter in the table.Finally to compute the mean square by dividing the degrees of freedom into the sum of squares.
$M S T=\frac{S S T}{k-1} \quad$ and $\quad M S E=\frac{S S E}{N-k}$
The test of the significance of differences among means is accomplished by computing the ratio of the estimate of σ^{2} based on between variation (MST) to the estimate based on within variation(MSE).This ratio is called an F statistic. The larger this ratio ,the greater the difference between the two values and the less likely the null hypothesis is true.
Therefore, for large F , we reject H_{0} and conclude that the means of the treatment groups significantly different; the groups are not drawn from the same population.Symbolically,

$$
F=\frac{M S T}{M S E}
$$

If the null hypothesis is true and $\mu_{A}=\mu_{B}=\mu_{C}=\mu_{D}$,then MST and MSE are both estimates of the common variance σ^{2} of the population. To determine if the calculated F value is large enough to warrant rejection of H_{0} we use Table(F distribution) to locate the tabulated critical value, F_{α}. The degrees of freedom associated with F are γ_{1} and γ_{2} where
$\gamma_{1}=\mathrm{df}$ associated with numerator (MST)
$\gamma_{2}=\mathrm{df}$ associated with denominator (MSE)
The degrees of freedom associated with the numerator $\left(\gamma_{1}\right)$ determines the appropriate column in the table; the denominator degrees of freedom $\left(\gamma_{2}\right)$ determines the appropriate row.

2-3-2 Factorial Experiment

we have the experiment like

A	B	$Y_{i j k}$				
a_{1}	b_{1}	Y_{111}	Y_{112}	Y_{113}	Y_{114}	$Y_{11 .}$
	b_{2}	Y_{121}	Y_{122}	Y_{123}	Y_{124}	$Y_{12 .}$
a_{2}	b_{1}	Y_{211}	Y_{212}	Y_{213}	Y_{214}	$Y_{21 .}$
	b_{2}	Y_{221}	Y_{222}	Y_{223}	Y_{224}	$Y_{22 .}$
						Y

First step:

$$
C F=\frac{\left(Y_{. .}\right)^{2}}{r a b}, S S T=\sum Y_{i j k}^{2}-C F, S S(A)=\frac{\sum Y_{i . .}^{2}}{b r}-C F, \quad S S t=\frac{\sum Y_{i j}^{2}}{r}-C
$$

SSe=SST-SSt
Second step: Constract $(A \times B)$ table

$a \mathrm{a} m$	b_{1}	b_{2}	Y
a_{1}	$Y_{11 .}$	Y_{12}	$Y_{1 .}$
a_{2}	$Y_{21 .}$	Y_{22}	$Y_{2 .}$
$Y_{j .}$	$Y_{1 .}$	$Y_{2 .}$	$Y_{.}$

, $\mathrm{SSAB}=\mathrm{SSt}-\mathrm{SSA}-\mathrm{SSB} S S B=\frac{\sum Y_{j .}^{2}}{a r}-C F$

Third step: Construct ANOVA table
Table 2:ANOVA for the Factorial Experiment

S.0.V	df	SS	MS	F	$F_{\text {table }}$
Treatment	(ab-1)	SSt	SSt/(ab-1)	MSt/MSe	
A	(a-1)	SSA	$\operatorname{SSA} /(\mathrm{a}-1)$	MSA/MSe	f ure
B	(b-1)	SSB	$\operatorname{SSB} /(\mathrm{b}-1)$	MSB/MSe	$\int_{\text {a, }}^{\text {did }}$ dide
AB	(a-1)(b-1)	SSAB	$\operatorname{SSAB} /(\mathrm{a}-1)(\mathrm{b}-1)$	MSAB/MSe	$f_{\text {c, }, \text { quade }}$
Error	$a b(r-1)$	SSe	SSe/ab(r-1)		
Total	rab-1	SST			

3-3-2 Duncan Range Test:

The information required to apply this test to a set of data is as follows:
1-The mean
2- The standard error of the mean $S_{\bar{x}}$
3-The degrees of freedom on which the error mean square is based.The standard error of the mean is derived from the error mean square; that is
$S_{\bar{x}}=\sqrt{\frac{s^{2}}{r}}$ where $\mathrm{s}^{2}=$ the mean square for error and $\mathrm{r}=$ the number of replications.

4-3-2 Least Significant Difference Test (LSD):

In this test, the difference between any two means is declared significant at some desired point,usually the 5 per cent level of significance, when it exceeds the value derived from: $t s_{\bar{x}} \sqrt{2}$
In the other words, the LSD test utilizes the standard error of a difference between two means, $\sqrt{2 S_{\bar{x}}}$, which serves as the least significant difference between two means when multiplied by the tabulated values of " t " at either the 5 per cent or 1 per cent levels of significance.This test is applicable only when the F-test for the homogeneity of the means in the experiment is significant.

3-The Result and Discussion

1-3-Linear Regression
1-1-3 First Stage
Table 3: Calculus

STAT MULTIPLE REGRESS.	$\begin{aligned} & \text { Regression Summary for Dependent Variable: } Y \\ & R=.79515122 \quad R^{2} \quad=.63226546 \quad \text { Adjusted } \quad R^{2}=.49854381 \\ & F(4,11)=4.7282 \quad \mathrm{p}<.018 \\ & \hline 26 \\ & \text { Std. Error of estimate: } .75387 \end{aligned}$					
$\mathrm{N}=16$	BETA	$\begin{aligned} & \text { St.Err. } \\ & \text { of BETA } \end{aligned}$	B	St. Err. of B	t (11)	p -level
Intercpt			4.900301	5.349970	. 91595	. 379336
Personality x_{1}	. 580407	276876	. 877493	418597	2.09627	. 059986
Scientifically x_{2}	-. 062842	286127	-. 082193	374236	-. 21963	. 830183
Connection X_{3}	-. 498641	209303	-. 599782	251757	-2.38238	. 036348
Evaluation X_{4}	. 190998	336450	. 142741	251443	. 56769	. 581649

$\hat{Y}=4.900301+0.877493 x_{1}-0.082193 x_{2}-0.599782 x_{3}+0.142741 x_{4}$
There exist significant difference between variables,

Table 4: Foundation of Mathematics

STAT. MULTIPLE REGRESS.	$\begin{aligned} & \text { Regression Summary for Dependent Variable: } Y \\ & \mathrm{R}=.70944254 \quad \mathrm{R}^{2} \quad=.50330871 \quad \text { Adjusted } R^{2}=.32269370 \\ & \mathrm{~F}(4,11)=2.7866 \quad \mathrm{p}<.08028 \text { Std. Error of estimate: } 2.3374 \end{aligned}$					
$\mathrm{N}=16$	BETA	St. Err. of BETA	B	$\begin{aligned} & \text { St. Err. } \\ & \text { of B } \end{aligned}$	t (11)	p -level
Intercpt			2.399426	2.032682	1.18042	. 262728
Personality x_{1}	-. 278517	264932	-. 093053	. 088514	-1.05127	315680
Scientifically x_{2}	-. 484462	. 394542	-. 517606	. 421535	-1.22791	. 245108
Connection X_{3}	. 363616	606996	327194	. 546196	59904	. 561279
Evaluation x_{4}	. 636563	465529	670881	490626	1.36740	. 198791

$\hat{Y}=2.399426-0.093053 \mathrm{x}_{1}-0.517606 \mathrm{x}_{2}+0.327194 \mathrm{x}_{3}+0.670881 \mathrm{x}_{4}$
There exist significant difference between variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{4}$

Table 5: Linear Algebra I

STAT. MULTIPLE REGRESS.	$\begin{aligned} & \hline \text { Regression Summary for Dependent Variable:Y } \\ & R=.61636682 \quad R^{2} \quad=37990805 \quad \text { Adjusted } \quad R^{2}=.15442007 \\ & F(4,11)=1.6848 \quad p<.22305 \text { Std. Error of estimate: } 1.9252 \\ & \hline \end{aligned}$					
$\mathrm{N}=16$	BETA	St. Err. of BETA	B	$\begin{aligned} & \text { St. Err. } \\ & \text { of B } \end{aligned}$	t (11)	p -level
Intercpt			4.342661	6.247706	69508	. 501424
Personality x_{1}	. 047570	. 722151	. 074233	1.126922	. 06587	. 948661
Scientifically x_{2}	1.062851	. 934662	. 898822	790417	1.13715	. 279640
Connection X_{3}	-. 754770	. 535227	-. 731825	518956	-1.41019	. 186130
Evaluation X_{4}	. 091831	. 287170	111002	347121	31978	755127

$\hat{Y}=4.342661+0.74233 x_{1}+0.898822 x_{2}-0.731825 x_{3}+0.111002 x_{4}$
There exist significant in x_{2}.
Table 6 : General Physics

STAT. MULTIPLE REGRESS	Regression Summary for Dependent Variable:Y $\mathrm{R}=.73373907 \mathrm{R}^{2} \quad=53837302$ Adjusted $\mathrm{R}^{2}=.37050866$ $F(4,11)=3.2072 \quad p<05642$ Std. Error of estimate: 2.0170					
$\mathrm{N}=16$	BETA	St. Err. of BETA	B	$\begin{aligned} & \hline \text { St.Err. } \\ & \text { of B } \end{aligned}$	t(11)	p -level
Intercpt			24023	2.489126	09651	. 924850
Personality x_{1}	81001	. 401552	1.21620	. 602911	2.01721	. 068745
Scientifically x_{2}	48805	. 568690	58271	. 678996	85819	. 409097
Connection X_{3}	-1.33377	. 578295	-1.45239	. 629725	-2.30639	. 041562
Evaluation X_{4}	49812	. 468232	48575	456605	1.06384	. 310197

$\hat{Y}=0.24023+1.2162 \mathrm{x}_{1}+0.58271 \mathrm{x}_{2}-1.45239 \mathrm{x}_{3}+0.48575 \mathrm{x}_{4}$
There exist significant different between some variable like $\mathrm{x}_{1}, \mathrm{x}_{3}, \mathrm{x}_{4}$

Table 7: computers

STAT. MULTIPLE REGRESS.						
$\mathrm{N}=16$	BETA	St.Err. of BETA	B	$\begin{aligned} & \text { St. Err. } \\ & \text { of B } \end{aligned}$	t(11)	p -level
Intercpt			8.310100	1.663374	4.99593	. 000405
Personality x_{1}	-. 675218	. 430883	-. 364193	232405	-1.56706	. 145398
Scientifically x_{2}	. 035114	. 330761	. 025736	242425	. 10616	. 917367
Connection x_{3}	1.085462	. 630661	. 659920	383418	1.72115	. 113190
Evaluation X_{4}	-. 417650	. 523779	-. 274669	344466	-. 79738	. 442104

$\hat{Y}=8.310100-0.364193 x_{1}+0.025736 x_{2}+0.65992 x_{3}-0.274669 x_{4}$
There exist significant between $\mathrm{x}_{1}, \mathrm{x}_{3}$
Table 8: English

STAT. MULTIPLE REGRESS	$\mathrm{R}=.47532676 \mathrm{R}^{2} \quad=.22593552$ Adjusted $\mathrm{R}^{2}=$ $\mathrm{F}(4,11)=.80268$ p<.54832 Std. Error of estimate: . 64639					
$\mathrm{N}=16$	BETA	St. Err. of BETA	B	$\begin{aligned} & \text { St.Err. } \\ & \text { of B } \end{aligned}$	t(11)	p -level
Intercpt			5.883375	3.328292	1.767686	. 104804
Personality x_{1}	. 095895	. 270247	. 058531	. 164950	. 354842	. 729418
Scientifically x_{2}	. 130625	. 336864	. 114334	. 294853	. 387766	. 705587
Connection X_{3}	. 208684	. 392891	. 146792	. 276365	. 531151	. 605873
Evaluation X_{4}	. 195304	. 423120	. 070359	. 152430	. 461580	. 653377

$\hat{Y}=5.883375+0.058531 x_{1}+0.114334 x_{2}+0.146792 x_{3}+0.070359 x_{4}$
Not significant difference between variables

Table 9: Human Rights

STAT. MULTIPLE REGRESS.	$\begin{aligned} & \text { Regression Summary for Dependent Variable: } Y \\ & R=.96954541 \\ & R^{2} \quad=.94001830 \quad \text { Adjusted } \quad R^{2}=.91820677 \\ & \mathrm{~F}(4,11)=43.097 \end{aligned} \mathrm{p}<.00000 \text { Std. Error of estimate: . } 80130 .$					
$\mathrm{N}=16$	BETA	St. Err. of BETA	B	St. Err. of B	t(11)	p -level
Intercpt			-2.35932	1.527691	-1.54437	. 150765
Personality x_{1}	-. 397012	. 216759	-. 42295	230921	-1.83158	. 094206
Scientifically x_{2}	. 293750	. 162591	. 55488	307128	1.80669	. 098214
Connection X_{3}	$\begin{array}{r} -.105422 \\ 1.195337 \end{array}$. 358605	-. 12716	432536	-. 29398	. 774248
Evaluation X_{4}		. 193167	1.24813	201698	6.18811	. 000068

$\hat{\mathrm{Y}}=-2.35932-0.42295 \mathrm{x}_{1}+0.55488 \mathrm{x}_{2}-0.12716 \mathrm{x}_{3}+1.24813 \mathrm{x}_{4}$
There exist significant difference between some variable like $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{4}$

2-1-3-Second Stage

Table 10: Advanced Calculus

STAT. MULTIPLE REGRESS.	$\begin{aligned} & \text { Regression Summary for Dependent Variable:Y } \\ & R=.66833597 \quad R^{2} \quad=.44667297 \quad \text { Adjusted } R^{2}=.32371141 \\ & F(4,18)=3.6326 \end{aligned} \quad \mathrm{p}<.02441 \text { Std. Error of estimate: } 1.4841 .$					
$\mathrm{N}=23$	BETA	St. Err.of BETA	B	St.Err. of B	t(18)	p -level
Intercpt			3.46112	1.24527	2.7794	. 01237
Personality X_{1}	-. 32203	. 23691	-. 26326	. 19367	-1.3593	. 19083
Scientifically x_{2}	. 01129	. 25960	. 00870	. 20010	. 0435	. 96579
Connection X_{3}	. 44374	. 29517	. 38388	25535	1.5034	. 15009
Evaluation X_{4}	. 42544	. 30971	. 40982	. 29834	1.3736	. 18642

$\hat{Y}=3.46112-0.26326 x_{1}+0.00870 x_{2}+0.38388 x_{3}+0.40982 x_{4}$
There exist significant deference in $\mathrm{x}_{1}, \mathrm{x}_{3}, \mathrm{x}_{4}$

Table 11: Linear AlgebraII

STAT. MULTIPLE REGRESS	$\begin{aligned} & \text { Regression Summary for Dependent Variable: } \mathrm{Y} \\ & \mathrm{R}=.75913894 \quad \mathrm{R}^{2} \quad=57629194 \quad \text { Adjusted } \quad \mathrm{R}^{2}=48213459 \\ & \mathrm{~F}(4,18)=6.1205 \\ & \hline \end{aligned}$					
$\mathrm{N}=23$	BETA	$\begin{gathered} \text { St. Err. of } \\ \text { BETA } \end{gathered}$	B	$\begin{aligned} & \text { St:Err. } \\ & \text { of B } \end{aligned}$	t(18)	p -level
Intercpt			-. 283878	1.497877	-. 189520	. 851806
Personality x_{1}	- 194176	317763	-. 174263	285177	-. 611070	. 548793
Scientifically x_{2}	. 451409	225444	. 571050	285196	2.002310	. 060552
Connection x_{3}	. 533568	258258	. 519714	251552	2.066030	. 053526
Evaluation x_{4}	110531	242288	112916	247515	456199	. 653703

$\hat{Y}=-0.283878-0.174263 x_{1}+0.57105 x_{2}+0.519714 x_{3}+0.112916 x_{4}$ There exist significant different in $\mathrm{x}_{2}, \mathrm{x}_{3}$

Table 12: Probability and Statistics

STAT. MULTIPLE REGRESS	Regression Summary for Dependent Variable: Y $\mathrm{R}=.91697110 \mathrm{R}^{2} \quad=.84083600$ Adjusted $\mathrm{R}^{2}=.80546622$ $F(4,18)=23.773 \quad \mathrm{p}<00000$ Std. Error of estimate: 1.0885					
$\mathrm{N}=23$	BETA	St. Err. of BETA	B	$\begin{aligned} & \text { St. Err. } \\ & \text { of B } \end{aligned}$	t(18)	p-level
Intercpt			. 315994	694348	. 455094	. 654483
Personality x_{1}	-. 011412	. 139654	-. 009588	117335	-. 081714	. 935776
Scientifically x_{2}	-. 054116	. 132917	-. 051968	127642	-. 407139	. 688707
Connection X_{3}	. 759879	. 140620	. 660274	122187	5.403792	. 000039
Evaluation X_{4}	. 273014	. 129938	. 311598	148301	2.101119	. 049981

$\hat{Y}=0.315994-0.009588 \mathrm{x}_{1}-0.051968 \mathrm{x}_{2}+0.660274 \mathrm{x}_{3}+0.311598 \mathrm{x}_{4}$
There exist significant difference in $\mathrm{x}_{3}, \mathrm{x}_{4}$

J.Thi-Qar Sci.

No. (3)

Table 13: Differential Equations

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable: $Y$$R=.83630073 \quad R^{2} \quad=69939891 \quad$ Adjusted $R^{2}=63259867$$F(4,18)=10.470 \quad \mathrm{p}<.00015$ Std. Error of estimate: : 89532					
$\mathrm{N}=23$	BETA	St. Err. of BETA	B	$\begin{aligned} & \text { St. Err. } \\ & \text { of } B \end{aligned}$	t(18)	p -level
Intercpt			. 132886	1.582499	08397	. 934005
Personality x_{1}	-. 349679	201540	-. 358558	206657	-1.73504	. 099823
Scientifically x_{2}	. 799151	205998	741599	191163	3.87941	. 001099
Connection X_{3}	. 309088	144439	345415	161414	2.13993	. 046309
Evaluation X_{4}	. 196178	145449	226801	168154	1.34877	. 194137

$\hat{Y}=0.132886+0.206657 x_{1}+0.191163 x_{2}+0.161414 x_{3}+0.168154 x_{4}$
There exist significant difference in all variable
Table 14: Computers

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y $\mathrm{R}=.92965996 \mathrm{R}^{2} \quad=.86426764$ Adjusted $\mathrm{R}^{2}=83410489$ $F(4,18)=28.653 \quad \mathrm{p}<00000$ Std. Error of estimate: . 79546					
$\mathrm{N}=23$	BETA	St. Err. of BETA	B	St.Err. of B	t(18)	p -level
Intercpt			1.277132	1.730030	738214	. 469901
Personality x_{1}	-. 071417	097477	-. 092120	. 125734	-. 732660	. 473200
Scientifically x_{2}	-. 108434	. 118689	-. 179539	. 196519	-. 913598	. 373004
Connection X_{3}	. 958168	118136	. 976032	. 120339	8.110691	. 000000
Evaluation X_{4}	. 094565	096684	172206	. 176065	978082	. 340997

$\hat{Y}=1.277132-0.092120 x_{1}-0.179539 x_{2}+0.976032 x_{3}+0.172206 x_{4}$ There exist significant difference in x_{3}

Table 15: Democratic and Freedom

$\begin{gathered} \text { STAT. } \\ \text { MULTIPLE } \\ \text { REGRESS. } \end{gathered}$	$\begin{aligned} & \text { Regression Summary for Dependent Variable: } Y \\ & R=.94462445 \quad R^{2} \quad=.89231535 \quad \text { Adjusted } R^{2}=.86838543 \\ & F(4,18)=37.289 \quad \mathrm{p}<.00000 \text { Std. Error of estimate: } .86069 \end{aligned}$					
$\mathrm{N}=23$	BETA	St.Err. of BETA	B	St. Err. of B	t(18)	p -level
Intercpt			-. 094120	. 730230	-. 128891	. 898873
Personality x_{1}	. 257904	. 198436	. 217294	. 167190	1.299680	. 210110
Scientifically x_{2}	. 631863	. 133769	. 677395	. 143408	4.723538	. 000169
Connection X_{3}	. 037757	. 217449	. 033081	. 190520	. 173637	. 864088
Evaluation X_{4}	. 077329	. 172434	. 068914	. 153670	. 448456	. 659175

$\hat{Y}=-0.09412+0.217294 x_{1}+0.677395 x_{2}+0.033081 x_{3}+0.68914 x_{4}$
There exist significant difference in $\mathrm{x}_{1}, \mathrm{x}_{2}$

3-1-3- Third stage

Table 16: Mathematical Analysis

STAT. MULTPLE REGRESS	Regression Summary for Dependent Variable:Y $\mathrm{R}=.63739402 \quad \mathrm{R}^{2} \quad=40627114$ Adjusted $\mathrm{R}^{2}=20836152$ $F(4,12)=2.0528$ p <15059 Std. Error of estimate: 1.0461					
$\mathrm{N}=17$	BETA	$\begin{array}{\|c} \text { St Errof } \\ \text { BETA } \\ \hline \end{array}$	-	$\begin{aligned} & \text { St.Err. } \\ & \text { of } \end{aligned}$	t(12)	p-level
Intercpt			820134	2.688448	. 305059	. 765548
Personality z_{1}	. 259674	287115	. 204207	. 225786	. 904425	. 383568
Scientifically z_{2}	-038910	. 286030	-. 032230	. 236927	-. 136034	. 894050
Connection x_{3}	. 625396	. 328871	. 597448	. 314175	1.901643	. 081492
Evaluation x_{4}	-. 001677	330260	-. 001020	200911	-. 005077	. 996032

$\hat{Y}=0.820134+0.204207 x_{1}-0.032230 x_{2}+0.597448 x_{3}-0.001020 x_{4}$
There exist significant difference in x_{3}

Table 17: Numerical Analysis

STAT. MULTIPLE REGRESS	Regression Summary for Dependent Variable: Y $\mathrm{R}=.87452082 \quad \mathrm{R}^{2} \quad=76478666 \quad$ Adjusted $\mathrm{R}^{2}=.68638221$ $F(4,12)=9.7544$ p< 00095 Std. Error of estimate: 1.0749					
$\mathrm{N}=17$	BETA	St.Err. of BETA	B	$\begin{aligned} & \text { St. Err. } \\ & \text { of B } \end{aligned}$	t(12)	p -level
Intercpt			4.446973	2.666341	1.66782	. 121215
Personality x_{1}	-. 195671	174153	-. 187951	167283	-1.12356	. 283176
Scientifically x_{2}	-. 024296	144371	-. 036749	218362	-. 16829	. 869157
Connection X_{3}	150006	336918	. 105182	. 236242	44523	. 664080
Evaluation x_{4}	745259	336880	609109	275336	2.21224	. 047091

$\hat{Y}=4.446973-0.187951 x_{1}-0.036749 x_{2}+0.105182 x_{3}+0.609109 x_{4}$
There exist significant difference in $\mathrm{x}_{1}, \mathrm{x}_{4}$

Table 18: Operation Research

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y $\mathrm{R}=.68435883 \mathrm{R}^{2} \quad=.46834700$ Adjusted $\mathrm{R}^{2}=.29112934$ $F(4,12)=2.6428$ p< 08604 Std. Error of estimate: 1.6240					
$\mathrm{N}=17$	BETA	St.Err. of BETA	B	St. Err. of B	t(12)	p -level
Intercpt			2.918298	1.290035	2.262185	. 043041
Personality x_{1}	-. 100527	331817	-. 057642	. 190263	-. 302960	. 767108
Scientifically X_{2}	. 257378	472492	. 198580	. 364553	. 544724	. 595922
Connection x_{3}	. 504196	350910	. 414137	. 288231	1.436822	. 176326
Evaluation x_{4}	. 028329	333167	017395	204579	. 085029	. 933641

$\hat{Y}=2.918298-0.057642 x_{1}+0.198580 x_{2}+0.414137 x_{3}+0.017395 x_{4}$
There exist significant difference in x_{3}

Table 19: Theory of Differential Equation

STAT. MULTIPLE REGRESS	$\begin{aligned} & \text { Regression Summary for Dependent Variable:Y } \\ & R=.84634149 \quad R^{2} \quad=71629393 \quad \text { Adjusted } R^{2}=.62172523 \\ & F(4,12)=7.5743 \quad \mathrm{p}<.00276 \text { Std. Error of estimate: } 1.4385 \\ & \hline \end{aligned}$					
$\mathrm{N}=17$	BETA	St.Err. of BETA	B	$\begin{aligned} & \text { St. Err. } \\ & \text { of B } \end{aligned}$	t (12)	p-level
Intercpt			-. 972098	1.520931	-. 639147	. 534738
Personality x_{1}	088760	. 163292	. 068314	. 125677	543567	. 596693
Scientifically X_{2}	449471	. 195896	352302	. 153547	2.294430	. 040605
Connection X_{3}	246333	. 155700	202864	. 128225	1.582098	. 139612
Evaluation X_{4}	418902	. 189717	379817	. 172016	2.208037	. 047447

$\hat{Y}=-0.972098+0.068314 x_{1}+0.352302 x_{2}+0.202864 x_{3}+0.379817 x_{4}$
There exist significant difference in $\mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$
Table 20: Abstract Algebra

STAT. MULTIPLE REGRESS.	$\begin{aligned} & \text { Regression Summary for Dependent Variable: } Y \\ & R=.86473883 \quad R^{2} \quad=74777325 \quad \text { Adjusted } \quad R^{2}=66369767 \\ & \mathrm{~F}(4,12)=8.8941 \quad \mathrm{p}<.00141 \quad \text { Std. Error of estimate: } 1.2048 \\ & \hline \end{aligned}$					
$\mathrm{N}=17$	BETA	St. Err. of BETA	B	St. Err. of B	t (12)	p-level
Intercpt			1.514603	2.555551	592672	. 564403
Personality x_{1}	. 005750	158242	008510	234193	036337	. 971611
Scientifically x_{2}	-. 149893	222592	-. 214368	318338	-. 673396	. 513456
Connection X_{3}	. 547646	. 198889	. 365478	132731	2.753525	. 017488
Evaluation X_{4}	. 492068	272959	. 557072	309018	1.802716	. 096585

$\hat{Y}=1.514603+0.008510 x_{1}-0.214368 x_{2}+0.365478 x_{3}+0.557072 x_{4}$
There exist significant difference in $\mathrm{x}_{3}, \mathrm{x}_{4}$

J.Thi-Qar Sci.

Table 21: Computers

STAT. MULTIPLE REGRESS	Regression Summary for Dependent Variable: $Y$$R=.89207711 \quad R^{2} \quad=79580156 \quad$ Adjusted $\quad R^{2}=.72773542$$F(4,12)=11.692 \quad \mathrm{p}<.00042$Std. Error of estimate: .49623					
$\mathrm{N}=17$	BETA	St.Err. of BETA	B	$\begin{aligned} & \text { St. Err. } \\ & \text { of B } \end{aligned}$	t(12)	p -level
Intercpt			5.648710	1.897063	2.97761	. 011537
Personality x_{1}	-. 030495	200231	-. 033325	218809	-. 15230	. 881481
Scientifically x_{2}	. 002117	284268	. 000900	120811	. 00745	. 994179
Connection x_{3}	1.191049	292939	. 597348	146918	4.06586	. 001565
Evaluation X_{4}	-. 395254	228385	-. 168351	097276	-1.73065	. 109121

$\hat{Y}=5.648710-0.033325 x_{1}+0.000900 x_{2}+0.597348 x_{3}-0.168351 x_{4}$ There exist significant difference in $\mathrm{x}_{3}, \mathrm{x}_{4}$

4-1-3- Fourth Stage
 Table 22: Topology

STAT. MULTIPLE REGRESS	$\begin{aligned} & \text { Regression Summary for Dependent Variable: } Y \\ & R=.72376181 \quad R^{2} \quad=52383116 \quad \text { Adjusted } R^{2}=.36510822 \\ & F(4,12)=3.3003 \quad \mathrm{p}<.04829 \quad \text { Std. Error of estimate: } 1.4429 \end{aligned}$					
$\mathrm{N}=17$	BETA	St.Err. of BETA	B	$\begin{aligned} & \text { St. Err. } \\ & \text { of B } \end{aligned}$	t(12)	p-level
Intercpt			. 183937	3.409753	. 053944	. 957867
Personality X_{1}	314766	327679	. 316187	. 329158	. 960592	355714
Scientifically X_{2}	-. 012411	. 374920	-. 021260	642221	-. 033104	974136
Connection X_{3}	. 446304	. 336844	. 526072	. 397049	1.324956	209862
Evaluation X_{4}	. 034239	,327759	. 036756	351857	. 104463	918527

$\hat{\mathrm{Y}}=0.183937+0.316187 \mathrm{x}_{1}-0.021260 \mathrm{x}_{2}+0.526072 \mathrm{x}_{3}+0.036756 \mathrm{x}_{4}$ There exist significant difference in x_{3}

Table 23: Complex Analysis

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable: Y $R=.88970708$ $R^{2} \quad=.79157869 \quad$ Adjusted $\quad R^{2}=.72210492$ $F(4,12)=11.394$$\quad \mathrm{p}<.00047$ Std. Error of estimate: . 96422.					
$\mathrm{N}=17$	BETA	St. Err. of BETA	B	$\begin{aligned} & \text { St. Err. } \\ & \text { of B } \end{aligned}$	t (12)	p -level
Intercpt			-2.17639	1.622206	-1.34162	. 204556
Personality x_{1}	510122	. 282165	. 67097	371135	1.80788	. 095738
Scientifically x_{2}	-. 403430	. 290708	-. 47808	344501	-1.38775	. 190442
Connection X_{3}	592253	. 234904	. 65325	259096	2.52125	. 026847
Evaluation X_{4}	. 285409	. 170792	. 31313	187382	1.67109	. 120557

$\hat{Y}=-2.17639+0.67097 x_{1}-0.47808 x_{2}+0.65325 x_{3}+0.31313 x_{4}$
There exist significant difference in all variable.

Table 24: Functional Analysis

$\begin{gathered} \text { STAT. } \\ \text { MULTIPLE } \\ \text { REGRESS. } \end{gathered}$	$\begin{aligned} & \text { Regression Summary for Dependent Variable: } \mathrm{Y} \\ & \mathrm{R}=.73955840 \quad \mathrm{R}^{2} \quad=54694663 \text { Adjusted } R^{2}=39592884 \\ & \mathrm{~F}(4,12)=3.6217 \quad \mathrm{p}<.03703 \text { Std. Error of estimate: } 1.3495 \end{aligned}$					
$\mathrm{N}=17$	BETA	St.Err. of BETA	B	St. Err. of B	t (12)	p -level
Intercpt			626249	2.020723	309913	. 761943
Personality x_{1}	. 056205	314574	. 061540	. 344431	. 178670	. 861178
Scientifically x_{2}	-. 040969	. 311451	-. 042006	. 319337	-. 131542	. 897526
Connection X_{3}	. 124653	. 327540	. 134341	. 352995	. 380574	. 710171
Evaluation X_{4}	. 646305	254409	599827	236114	2.540414	025919

$\hat{Y}=0.626249+0.061540 x_{1}-0.042006 x_{2}+0.134341 x_{3}+0.599827 x_{4}$
There exist significant difference in x_{4}

Table 25: Topological Entropy

STAT. MULTIPLE REGRESS	Regression Summary for Dependent Variable:Y $\mathrm{R}=.83510172 \quad \mathrm{R}^{2} \quad=69739489$ Adjusted $\mathrm{R}^{2}=.59652652$ $\mathrm{F}(4,12)=6.9139 \quad \mathrm{p}<00398$ Std. Error of estimate: 1.3241					
$\mathrm{N}=17$	BETA	$\begin{aligned} & \text { St. Err. of } \\ & \text { BETA } \end{aligned}$	B	$\begin{aligned} & \text { St.Err. } \\ & \text { of B } \end{aligned}$	t(12)	p-level
Intercpt			260684	1.215069	214542	. 833727
Personality x_{1}	-. 225311	317834	-. 209895	296088	-. 708895	. 491932
Scientifically x_{2}	. 559908	. 399628	. 567151	. 344022	1.648590	. 125145
Connection X_{3}	. 403491	. 252747	382107	. 239352	1.596421	. 136378
Evaluation x_{4}	148043	. 237488	116890	. 187513	623371	. 544708

$\hat{Y}=0.260684-0.209895 \mathrm{x}_{1}+0.567151 \mathrm{x}_{2}+0.382107 \mathrm{x}_{3}+0.116890 \mathrm{x}_{4}$
There exist significant difference in $\mathrm{x}_{2}, \mathrm{x}_{3}$

Table 26: Computers

STAT. MULTIPLE REGRESS	Regression Summary for Dependent Variable: Y $R=.74445425 \quad R^{2} \quad=55421214 \quad$ Adjusted $\quad R^{2}=40561618$ $\mathrm{~F}(4,12)=3.7297$ $\mathrm{p}<.03395$					
$\mathrm{N}=17$	BETA	St. Err. of BETA	B	$\begin{aligned} & \text { St. Err. } \\ & \text { of B } \end{aligned}$	$\mathrm{t}(12)$	p -level
Intercpt			-1.03502	2.478862	-. 417540	. 683657
Personality x_{1}	209067	283645	23795	. 322828	. 737074	. 475242
Scientifically x_{2}	220965	323891	31750	. 465391	. 682221	. 508054
Connection X_{3}	376143	456787	49025	. 595356	. 823452	. 426314
Evaluation x_{4}	. 019149	. 309416	02456	. 396802	. 061888	. 951671

$\hat{\mathrm{Y}}=-1.03502+0.23795 \mathrm{x}_{1}+0.31750 \mathrm{x}_{2}+0.49025 \mathrm{x}_{3}+0.02456 \mathrm{x}_{4}$
Not exist significant difference in variable

J.Thi-Qar Sci.

Table 27: History and Philosophy

STAT. MULTIPLE REGRESS	$\begin{aligned} & \text { Regression Summary for Dependent Variable: } Y \\ & R=.95139510 \quad R^{2} \quad=90515264 \quad \text { Adjusted } R^{2}=.87353685 \\ & F(4,12)=28.630 \quad \mathrm{p}<.00000 \\ & \hline \end{aligned}$					
$\mathrm{N}=17$	BETA	St. Err. of BETA	B	St.Err. of B	t(12)	p -level
Intercpt			747013	1.673278	44644	. 663231
Personality x_{1}	-. 258366	. 153343	-. 324739	192737	-1.68488	. 117818
Scientifically x_{2}	-. 049752	201411	-. 084077	. 340365	-. 24702	. 809068
Connection X_{3}	1.221691	. 187196	1.442613	221047	6.52628	. 000028
Evaluation X_{4}	-. 118560	238990	-. 140330	282872	-. 49609	. 628793

$\hat{Y}=0.747013-0.324739 x_{1}-0.084077 x_{2}+1.442613 x_{3}-0.140330 x_{4}$
There exist significant difference in x_{3}.

2-3 Correlations

1-2-3 First Stage

Table 28: Calculus

STAT.	Correlations				
variable	Personality X_{1}	$\begin{gathered} \text { Scientifically } \\ \mathrm{x} \end{gathered}$	Connection X_{3}	Evaluation ${ }^{3} 4$	Understanding Y
Personality x_{1}	1.000000	-. 138128	093600	535861	644763
Scientifically x_{2}	-. 138128	1.000000	428010	. 557017	-. 250046
Connection x_{3}	. 093600	428010	1.000000	429635	-. 389152
Evaluation x_{4}	. 535861	557017	429635	1.000000	252778
Understanding Y	644763	-. 250046	-. 389152	252778	1.000000

There exist positive correlation between (x_{1} and x_{4}), (x_{2} and x_{4})

Table 29: Foundation of Mathematics

STAT.	Correlations				
MULTIPLE					
REGRESS.					
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Y
Personality X_{1}	1.000000	.159304	-.279517	.042195	-.276117
Scientifically X_{2}	-.159304	1.000000	.838243	.711901	.317875
Connection X_{3}	-.279517	.838243	1.000000	.841069	.570763
Evaluation X_{4}	.042195	.711901	.841069	1.000000	.585748
Understanding Y	.276117	.317875	.570763	.585748	1.000000

There exist strong positive correlation between (x_{2} and x_{3}), $\left(\mathrm{x}_{2}\right.$ and $\left.\mathrm{x}_{4}\right)$, $\left(\mathrm{x}_{3}\right.$ and $\left.\mathrm{x}_{4}\right)$
Table 30: Linear AlgebraI

$\begin{aligned} & \text { STAT. } \\ & \text { MULTIPLE } \\ & \text { REGRESS. } \end{aligned}$	Correlations				
variable	Personality x_{1}	$\begin{gathered} \text { Scientifically } \\ x_{2} \end{gathered}$	$\begin{gathered} \text { Connection } \\ X_{3} \end{gathered}$	Evaluation X_{4}	$\begin{gathered} \hline \text { Understanding } \\ \mathrm{Y} \end{gathered}$
Personality x_{1}	1.000000	. 938325	753658	. 372954	510280
Scientifically x_{2}	. 938325	1.000000	. 859714	415883	496792
Connection x_{3}	753658	859714	1.000000	. 548130	245165
Evaluation x_{4}	. 372954	. 415883	. 548130	1.000000	137882
Understanding Y	. 510280	. 496792	245165	137882	1.000000

There exist strong positive correlation between (x_{1} and x_{2}), (x_{1} and x_{3}), (x_{2} and x_{3})
Table 31: General Physics

STAT MULTIPLE REGRESS	Correlations				
variable	$\begin{gathered} \text { Personality } \\ \mathrm{z}_{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Scientifically } \\ \mathrm{z}_{2} \end{gathered}$	$\begin{gathered} \text { Connection } \\ x_{3} \end{gathered}$	$\begin{gathered} \text { Evaluation } \\ x_{4} \end{gathered}$	$\begin{gathered} \hline \text { Understanding } \\ Y \\ \hline \end{gathered}$
Personality x_{1}	1.000000	. 850686	. 750554	. 630602	538238
Scientifically x_{2}	850686	1.000000	. 885209	. 810741	400298
Connection x_{3}	750554	. 885209	1.000000	. 891415	150246
Evaluation x_{4}	630602	. 810741	891415	1.000000	215656
Understanding Y	538238	400298	150246	215656	1.000000

There exist strong positive correlation between $\left(\mathrm{x}_{1}\right.$ and $\left.\mathrm{x}_{3}\right),\left(\mathrm{x}_{2}\right.$ and $\left.\mathrm{x}_{3}\right),\left(\mathrm{x}_{2}\right.$ and $\left.\mathrm{x}_{1}\right),\left(\mathrm{x}_{2}\right.$ and $\left.\mathrm{x}_{4}\right),\left(\mathrm{x}_{3}\right.$ and $\left.\mathrm{x}_{4}\right)$

Table 32: Computers

STAT.	Correlations				
MULTIPLE					
REGRESS.					
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X_{1}	X_{2}	X_{3}	X_{4}	Y
Personality x_{1}	1.000000	.397929	.791325	.751538	-.116172
Scientifically x_{2}	.397929	1.000000	.625792	.523332	.227129
Connection X_{3}	.791325	.625792	1.000000	.869958	.209780
Evaluation X_{4}	.751538	.523332	.869958	1.000000	.037580
Understanding Y	-.116172	.227129	.209780	.037580	1.000000

There exist positive correlation between (x_{1} and x_{3}), $\left(\mathrm{x}_{1}\right.$ and $\left.\mathrm{x}_{4}\right),\left(\mathrm{x}_{3}\right.$ and $\left.\mathrm{x}_{4}\right),\left(\mathrm{x}_{2}\right.$ and $\left.\mathrm{x}_{3}\right)$.
Table 33: English

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality X_{1}	Scientifically X_{2}	$\begin{gathered} \text { Connection } \\ x_{3} \\ \hline \end{gathered}$	$\begin{gathered} \text { Evaluation } \\ x_{4} \end{gathered}$	Understanding Y
Personality X_{1}	1.000000	-. 056237	-. 036155	078696	. 096374
Scientifically x_{2}	-. 056237	1.000000	. 518476	597456	. 350115
Connection X_{3}	-. 036155	. 518476	1.000000	. 725542	. 414644
Evaluation X_{4}	. 078696	. 597456	. 725542	1.000000	432302
Understanding Y	. 096374	. 350115	. 414644	432302	1.000000

There exist positive correlation between (x_{3} and x_{4}) only.
Table 34: Human Rights

STAT. MULTIPLE REGRESS.	Correlations					
Variable	Personality X_{1}	Scientifically X_{2}	Connection X_{3}	Evaluation X_{4}	Understanding Y	
Personality x_{1}	1.000000	.777607	.939854	.831336	.726057	
Scientifically x_{2}	.777607	1.000000	.836863	.603023	.617623	
Connection X_{3}	.939854	.836863	1.000000	.887751	.828436	
Evaluation X_{4}	.831336	.603023	.887751	1.000000	.948837	
Understanding Y	.726057	.617623	.828436	.948837	1.000000	

There exist strong positive correlation between (x_{1} and x_{3}), (x_{1} and $\left.\mathrm{x}_{4}\right),\left(\mathrm{x}_{1}\right.$ and $\left.\mathrm{x}_{2}\right)$, (x_{2} and x_{3}), x_{3} and x_{4}).

2-2-3 Second Stage

Table 35: Advanced Calculus

STAT. MULTIPLE REGRESS.	Correlations				
Variable	Personality X_{1}	$\begin{gathered} \hline \text { Scientifically } \\ \mathrm{X}_{2} \\ \hline \end{gathered}$	Connection X_{3}	Evaluation x_{4}	Understanding Y
Personality x_{1}	1.000000	. 597598	603794	606856	210821
Scientifically x_{2}	. 597598	1.000000	647378	693819	401287
Connection X_{3}	. 603794	647378	1.000000	781265	588987
Evaluation X_{4}	. 606856	. 693819	. 781265	1.000000	584521
Understanding Y	210821	401287	. 588987	584521	1.000000

There exist positive correlation between (x_{3} and x_{4}) only.
Table 36: Linear AlgebraII

STAT.	Correlations				
variable	Personality X_{1}	Scientifically x_{2}	Connection X_{3}	Evaluation X_{4}	Understanding Y
Personality x_{1}	1.000000	720420	747170	715882	608821
Scientifically z_{2}	720420	1.000000	449669	470958	603505
Connection x_{3}	747170	449669	1.000000	730312	672193
Evaluation x_{4}	.715882	. 470958	730312	1.000000	. 573790
Understanding Y	. 608821	. 603505	672193	573790	1.000000

There exist positive correlation between (x_{1} and x_{2}), $\left(\mathrm{x}_{1}\right.$ and $\left.\mathrm{x}_{3}\right),\left(\mathrm{x}_{1}\right.$ and $\left.\mathrm{x}_{4}\right),\left(\mathrm{x}_{3}\right.$ and $\left.\mathrm{x}_{4}\right)$
Table 37: Probability and Statistics

STAT. MULTIPLE REGRESS.					
variable	Personality x_{1}	Scientifically X_{2}	Connection X_{3}	Evaluation x_{4}	Understanding
Personality x_{1}	1.000000	.652383	.652594	.582447	.608193
Scientifically x_{2}	.652383	1.000000	.606739	.557972	.551822
Connection x_{3}	.652594	.606739	1.000000	.641947	.894858
Evaluation X_{4}	.582447	.557972	.641947	1.000000	.723974
Understanding Y	.608193	.551822	.894858	.723974	1.000000

There exist weakness positive correlation between all variable

Table 38: Differential Equations

STAT MULTIPLE REGRESS	Correlations				
variable	Personality x_{1}	Scientifically X_{2}	Connection X_{3}	Evaluation X_{4}	Understanding Y
Personality x_{1}	1.000000	. 757618	253261	. 366159	405884
Scientifically z_{2}	. 757618	1.000000	364470	. 348867	. 715321
Connection x_{3}	253261	. 364470	1.000000	358101	. 582046
Evaluation x_{4}	. 366159	. 348867	358101	1.000000	457622
Understanding Y	. 405884	715321	. 582046	457622	1.000000

There exist positive correlation between (x_{1} and x_{2}) only.

Table 39: Computers

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality x_{1}	$\begin{gathered} \text { Scientifically } \\ \mathrm{x}_{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Connection } \\ x_{3} \\ \hline \end{gathered}$	$\begin{gathered} \text { Evaluation } \\ x_{4} \end{gathered}$	Understanding Y
Personality x_{1}	1.000000	. 452593	. 247808	. 113186	. 127651
Scientifically x_{2}	452593	1.000000	. 604732	. 232776	. 460691
Connection x_{3}	247808	. 604732	1.000000	. 437314	. 916251
Evaluation X_{4}	. 113186	232776	. 437314	1.000000	. 480261
Understanding Y	. 127651	. 460691	. 916251	480261	1.000000

Not correlation between variables.

Table 40: Democratic and Freedom

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality X_{1}	Scientifically X_{2}	Connection X_{3}	Evaluation X_{4}	Understanding Y
Personality x_{1}	1.000000	. 772268	. 905899	. 868964	. 847271
Scientifically x_{2}	. 772268	1.000000	. 811000	. 729967	. 918102
Connection X_{3}	. 905899	. 811000	1.000000	. 875675	. 851548
Evaluation X_{4}	. 868964	. 729967	. 875675	1.000000	. 795740
Understanding Y	847271	918102	. 851548	795740	1.000000

There exist strong positive correlation between (x_{1} and x_{2}), $\left(\mathrm{x}_{1}\right.$ and $\left.\mathrm{x}_{3}\right),\left(\mathrm{x}_{1}\right.$ and $\left.\mathrm{x}_{4}\right),\left(\mathrm{x}_{2}\right.$ and x_{3})
(x_{2} and x_{4}), $\left(\mathrm{x}_{3}\right.$ and x_{4})

3-2-3 Third Stage

Table 41: Mathematical Analysis

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality X_{1}	Scientifically X_{2}	Connection X_{3}	Evaluation X_{4}	Understanding Y
Personality x_{1}	1.000000	.590762	-.103897	.124689	.171502
Scientifically X_{2}	.590762	1.000000	.134692	.274737	.198271
Connection X_{3}	-.103897	.134692	1.000000	.707897	.591989
Evaluation X_{4}	.124689	.274737	.707897	1.000000	.462727
Understanding Y	.171502	.198271	.591989	.462727	1.000000

There exist strong positive correlation between (x_{3} and x_{4}) only.

Table 42: Numerical Analysis

STAT MULTIPLE REGRESS.	Correlations				
variable	Personality X_{1}	Scientifically X_{2}	Connection X_{3}	Evaluation X_{4}	Understanding Y
Personality x_{1}	1.000000	-. 056547	-. 124353	184123	-. 075732
Scientifically x_{2}	-. 056547	1.000000	-. 138654	-. 061686	-. 080003
Connection X_{3}	-. 124353	-. 138654	1.000000	. 857342	. 816648
Evaluation x_{4}	. 184123	-. 061686	. 857342	1.000000	839336
Understanding Y	-. 075732	-. 080003	. 816648	839336	1.000000

There exist strong positive correlation between (x_{3} and x_{4}) only.
Table 43: Operation Research

STAT.	Correlations				
variable	$\begin{gathered} \text { Personality } \\ \mathrm{X}_{1} \end{gathered}$	$\begin{gathered} \text { Scientifically } \\ \mathrm{x}_{2} \end{gathered}$	$\begin{gathered} \text { Connection } \\ x_{3} \end{gathered}$	$\begin{gathered} \text { Evaluation } \\ x_{4} \end{gathered}$	$\begin{gathered} \text { Understanding } \\ Y \end{gathered}$
Personality x_{1}	1.000000	. 758037	. 473770	. 529876	. 348458
Scientifically x_{2}	. 758037	1.000000	. 755853	. 740144	. 583239
Connection X_{3}	473770	. 755853	1.000000	710196	671227
Evaluation x_{4}	. 529876	. 740144	. 710196	1.000000	. 523636
Understanding Y	. 348458	. 583239	671227	. 523636	1.000000

There exist positive correlation between $\left(\mathrm{x}_{1}\right.$ and $\left.\mathrm{x}_{2}\right),\left(\mathrm{x}_{2}\right.$ and $\left.\mathrm{x}_{3}\right),\left(\mathrm{x}_{2}\right.$ and $\left.\mathrm{x}_{4}\right),\left(\mathrm{x}_{3}\right.$ and $\left.\mathrm{x}_{4}\right)$

Table 44: Theory of Differential Equations

STAT.	Correlations				
MULTPLE					
REGRESS.					
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X_{1}	X_{2}	X_{3}	X_{4}	Y
Personality X_{1}	1.000000	.229872	-.025132	-.074567	.154654
Scientifically X_{2}	.229872	1.000000	.145325	.548297	.735355
Connection X_{3}	-.025132	.145325	1.000000	.096348	.349782
Evaluation X_{4}	-.074567	.548297	.096348	1.000000	.682460
Understanding Y	.154654	.735355	.349782	.682460	1.000000

Not correlation between all variables.
Table 45: Abstract Algebra

STAT.	Correlations				
MULTIPLE					
REGRESS.					
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Y
Personality x_{1}	1.000000	.227160	.374373	.345370	.346670
Scientifically z_{2}	.227160	1.000000	.310552	.733682	.382507
Connection X_{3}	.374373	.310552	1.000000	.628101	.812317
Evaluation z_{4}	.345370	.733682	.628101	1.000000	.728057
Understanding Y	.346670	.382507	.812317	.728057	1.000000

There exist positive correlation between (x_{2} and x_{4}).
Table 46: Computers

$\begin{gathered} \text { STAT. } \\ \text { MULTIPLE } \\ \text { REGRESS. } \end{gathered}$	Correlations				
variable	$\begin{gathered} \text { Personality } \\ x_{1} \end{gathered}$	$\begin{gathered} \hline \text { Scientifically } \\ \mathrm{z}_{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Connection } \\ X_{3} \end{gathered}$	$\begin{gathered} \text { Evaluation } \\ x_{4} \end{gathered}$	$\begin{gathered} \hline \text { Understanding } \\ Y \end{gathered}$
Personality x_{1}	1.000000	645660	191600	166502	133266
Scientifically x_{2}	. 645660	1.000000	722617	. 590141	. 609844
Connection x_{3}	. 191600	722617	1.000000	. 820602	862389
Evaluation x_{4}	. 166502	. 590141	820602	1.000000	. 578295
Understanding Y	133266	. 609844	862389	. 578295	1.000000

There exist positive correlation between (x_{2} and x_{3}), $\left(\mathrm{x}_{3}\right.$ and $\left.\mathrm{x}_{4}\right)$

4-2-3 Fourth Stage
 Table 47: Topology

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality x_{1}	Scientifically x_{2}	Connection x_{3}	Evaluation x_{4}	Understanding
Personality x_{1}	1.000000	.754247	.722113	.678213	.650908
Scientifically x_{2}	.754247	1.000000	.758299	.762771	.589548
Connection x_{3}	.722113	.758299	1.000000	.709303	.688474
Evaluation x_{4}	.678213	.762771	.709303	1.000000	.554815
Understanding Y	.650908	.589548	.688474	.554815	1.000000

There exist positive correlation between (x_{1} and x_{2}), $\left(\mathrm{x}_{1}\right.$ and $\left.\mathrm{x}_{3}\right),\left(\mathrm{x}_{2}\right.$ and $\left.\mathrm{x}_{3}\right),\left(\mathrm{x}_{2}\right.$ and $\left.\mathrm{x}_{4}\right)$, (x_{3} and x_{4})

Table 48: Complex Analysis

STAT. MULTPLE	Correlations				
variable	$\begin{gathered} \text { Personality } \\ x_{1} \end{gathered}$	$\begin{gathered} \text { Scientifically } \\ \mathrm{X}_{2} \end{gathered}$	$\begin{gathered} \text { Connection } \\ x_{3} \end{gathered}$	Evaluation ${ }^{3} 4$	$\begin{array}{\|c} \hline \text { Understanding } \\ Y \\ \hline \end{array}$
Personality x_{1}	1.000000	. 861564	785965	615287	. 803639
Scientifically x_{2}	. 861564	1.000000	805795	601497	684979
Connection x_{3}	. 785965	805795	1.000000	474741	803604
Evaluation x_{4}	. 615287	601497	474741	1.000000	637785
Understanding Y	803639	684979	803604	637785	1.000000

There exist positive correlation between (x_{1} and $\left.\mathrm{x}_{2}\right),\left(\mathrm{x}_{1}\right.$ and $\left.\mathrm{x}_{3}\right),\left(\mathrm{x}_{2}\right.$ and $\left.\mathrm{x}_{3}\right)$
Table 49: Functional Analysis

STAT.	Correlations				
variable	Personality X_{1}	Scientifically X_{2}	Connection	Evaluation X_{4}	Understanding Y
Personality x_{1}	1.000000	. 748880	. 676344	400273	. 368531
Scientifically x_{2}	. 748880	1.000000	669741	434016	. 365114
Connection x_{3}	. 676344	. 669741	1.000000	. 642821	. 550687
Evaluation x_{4}	. 400273	. 434016	642821	1.000000	. 731151
Understanding Y	. 368531	. 365114	550687	731151	1.000000

There exist positive correlation between (x_{1} and x_{2}).

Table 50: Topological Entropy

There exist positive correlation between (x_{1} and x_{2}), x_{1} and $\left.\mathrm{x}_{4}\right),\left(\mathrm{x}_{2}\right.$ and x_{3})
Table 51: Computers

STAT. MULTIPLE REGRESS.	Correlations					
variable	Personality X_{1}	Scientifically X_{2}	Connection X_{3}	Evaluation X_{4}	Understanding Y	
Personality x_{1}	1.000000	.631238	.698592	.406768	.619108	
Scientifically x_{2}	.631238	1.000000	.796830	.583562	.663833	
Connection X_{3}	.698592	.796830	1.000000	.762242	.712863	
Evaluation X_{4}	.406768	.583562	.762242	1.000000	.519849	
Understanding Y	.619108	.663833	.712863	.519849	1.000000	

There exist positive correlation between (x_{2} and x_{3}), (x_{3} and x_{4})
Table 52: History and Philosophy of Mathematics

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	scientifically	connection	evaluation	understanding
personality	1.000000	. 686555	694618	. 621119	. 482445
scientifically	. 686555	1.000000	564382	. 828363	. 364154
connection	. 694618	. 564382	1.000000	. 790590	. 920413
evaluation	. 621119	. 828363	790590	1.000000	. 645608
understanding	. 482445	. 364154	. 920413	. 645608	1.000000

There exist positive correlation between (x_{2} and x_{4}), (x_{3} and x_{4})

3-3 Design of Experiments

1-3-3 Completely Random Design

1-1-3-3 First stage
Table 53:significant different between courses.

The order	calculus	Foundation of math.	Linear Algebra I	General physics	computers	English	rights
1	7	8	8	9	5	9	6
2	6	0	8	5	10	10	10
3	9	4	7	9	10	9	8
4	9	0	5	5	0	10	4
5	8	6	8	5	9	10	8
6	9	6	8	10	10	10	10
7	7	0	8	5	8	9	3
8	9	8	10	10	9	9	10
9	9	7	10	8	8	8	10
10	8	4	7	7	10	10	2
11	9	6	8	9	7	10	10
12	8	8	8	7	9	10	10
13	9	5	8	7	8	9	9
14	8	6	6	8	9	10	10
15	7	2	1	0	10	10	10
16	8	6	8	7	10	10	10
Total	130	76	118	111	132	148	130

Table 54: ANOVA for significant different between courses

S.O.V.	d.f.	SS	MS	F	F-Table	
Tret.	6	196.6	32.76	5.59	2.17	
Error	105	616.15	5.86			

Table 55 : Result of Dankn test

The order of the best material	The result
English	SIg.*
Computers	SIg.
Calculus+rights	SIg.
Linear algebra I	$/$
General physics	$/$
Foundation of mathematics	$/$

2-1-3-3 Second stage

Table 56: significant different between courses

The order	Advanced calculus	Linear algebra II	Probability and statistics	Differential equations	computers	Democratic freedom
1	7	2	2	9	7	8
2	9	9	4	9	9	10
3	9	9	5	7	6	10
4	6	8	5	9	10	10
5	6	7	3	9	10	10
6	5	9	5	9	10	10
7	3	8	5	10	3	10
8	9	3	5	9	9	10
9	7	6	10	10	10	9
10	7	6	2	5	8	8
11	5	5	0	6	7	10
12	5	6	4	8	5	6
13	8	7	4	8	9	7
14	8	3	6	5	9	4
15	10	8	9	10	10	9
16	5	6	5	7	8	9
17	5	6	4	7	7	9
18	5	6	4	7	7	8
19	8	3	3	8	9	0
20	8	6	5	9	8	8
21	6	7	0	7	5	7
22	5	6	0	7	5	7
23	5	6	2	9	8	7
Total	151	142	92	184	169	186

Table 57: ANOVA for significant different between courses

S.O.V.	d.f.	SS	MS	F	F-Table	
Tret.	5	267.22	53.444	10.12	2.21	
Error	132	697.98	5.28			

Table 58: Result of Dankn test.

The order of the best material	The result
Democratic and freedom	Sig.**
Differential equations	Sig.*
Computers	Sig.*
Advanced calculus	Sig.
Linear algebra II	Sig.
Probability and statistics	1

3-1-3-3 Third stage

Table 59: significant different between courses

The order	Mathematical analysis	Numerical analysis	Operation research	Theory of diff. eq.	Abstract algebra	Computers
1	7	7	6	8	8	9
2	8	8	8	9	10	10
3	8	8	8	8	9	8
4	9	7	7	5	5	10
5	7	9	10	8	5	10
6	6	8	7	4	5	8
7	6	8	8	7	7	9
8	8	2	1	2	10	7
9	9	8	9	5	7	9
10	9	10	6	8	3	10
11	7	10	6	0	8	9
12	8	10	7	5	8	10
13	8	9	7	7	5	10
14	7	9	6	7	0	10
15	5	6	7	5	6	8
16	6	7	6	5	9	9
17	8	9	5	5	5	10
Total	126	135	114	98	110	156

Table 60: ANOVA for significant different between courses

S.O.V.	d.f	SS	MS	F	F-Table
Tret.	5	124.52	24.9	7.17	2.29
Error	96	333.34	3.47		

Table 61:Result of Dankn test

The order of the best material	The result
Computers	Sig.**
Numerical analysis	Sig.
Mathematical analysis	Sig.
Operation research	1
Abstract algebra	1
Theory of differential equations	1

4-1-3-3 fourth stage

Table 62: significant different between courses

The order	topology	Complex analysis	Functional analysis	Topological entropy	computers	History and philosophy
1	8	10	7	6	9	9
2	7	9	7	6	8	9
3	4	4	4	5	6	8
4	10	7	5	0	0	10
5	8	7	7	5	6	10
6	9	8	9	5	7	10
7	5	5	6	5	8	10
8	9	8	7	5	6	10
9	7	7	8	7	8	9
10	10	9	9	9	9	10
11	9	10	8	9	7	10
12	8	7	6	8	7	9
13	8	9	6	6	10	6
14	9	10	7	5	6	5
15	5	7	9	7	7	8
16	10	7	5	6	5	8
17	131		71	97	118	9
Total	133					5

Table 63: ANOVA of significant different between courses

S.O.V.	d.f.	SS	MS	F	F-Table	
Tret.	5	109.35	21.87	3.899	2.29	
Error	96	304.94	3.17			

Table 64:Result of Dankn test

The order of the best material	The result
History and philos ophy of math.	Sig. ${ }^{* *}$
Topology	Sig.
Complex analysis	Sig.
Computers	
Functional analysis	
Topological entropy	

2-3-3 Factorial Experiment

1-2-3-3 first stage

Table 65: significant different between courses

Calculus		Foundation of math.		Linear algebra I		Computers	
Persona lity	Scientifi Cally	Persona lity	Scientifi cally	Persona lity	Scientifi cally	Persona lity	Scientifi cally
10	10	7	6	9	8	9	7
10	10	9	9	8	7	2	10
10	10	10	8	10	10	9	7
10	9	9	5	9	8	7	8
10	10	7	6	10	10	5	6
10	10	10	6	10	9	10	9
10	10	8	6	10	9	9	8
10	10	7	5	10	10	8	9
10	10	9	9	10	10	10	10
8	10	0	0	10	10	6	6
10	10	10	10	10	10	7	10
9	9	8	8	9	8	7	8
10	7	10	3	5	0	3	3
10	9	6	5	10	9	10	8
8	10	5	10	10	10	10	10
10	9	7	8	8	9	10	8

Table 66: ANOVA of significant different between courses

S.O.V.	d.f.	SS	MS	F	F-Table
Rep.	15	169.38	11.29	7.14	1.75
A	3	125.31	41.77	26.4	2.68
B	1	5.28	5.28	3.3	3.92
AB	3	140.13	46.7	29.5	2.68
Error	120	190.78	1.58		

Table 67: Result of LSD test.

The material	scientifically	personality	The mean			
Calculus	9.68	9.56	9.62			
Foundation of Math.	7.62	6.5	7.06			
Linear algebra I	9.25	8.56	8.90			
Computers	7.62	7.93	7.77			
The least sig.	0.739					
The mean	8.54	8.13				
The least sig.	1.4					
best	calculus	linear algebra I	foundation of math			

2-2-3-3 second stage

Table 68: significant different between courses

Advanced calculus		Linear algebra II		Probability and statistics		Differential equations		Computers	
Persona Lity	Scientifi cally								
6	8	8	8	2	7	9	10	8	9
8	9	9	9	4	6	9	8	9	9
5	10	8	7	7	6	8	9	8	10
10	10	9	8	8	6	10	9	9	10
4	7	8	8	6	5	7	9	7	6
10	9	10	9	8	3	10	9	10	9
8	8	4	5	3	5	7	8	9	7
8	7	2	4	3	5	4	3	3	8
5	10	8	8	6	8	7	8	7	9
5	5	7	6	6	7	9	9	10	10
5	4	7	5	6	7	9	9	10	10
8	10	8	7	0	0	10	10	10	10
7	10	7	5	8	9	10	10	8	10
3	10	8	9	9	10	8	10	9	10
8	9	7	7	8	9	10	10	8	10
6	6	7	6	8	5	9	7	9	8
6	9	8	7	7	7	9	9	8	9
6	9	8	7	7	7	9	8	8	9
8	9	2	4	2	4	8	9	9	9
6	10	8	8	7	8	10	10	9	9
6	6	4	7	10	7	9	8	7	7
7	8	4	8	1	3	9	8	8	9
0	0	5	5	0	0	7	6	7	7

Table 69: ANOVA of significant different between courses

S.O.V.	d.f.	SS	MS	F	F-Table
Rep.	22	349.35	15.87	3.59	1.52
A	4	281.94	70.48	15.9	2.37
B	1	15.65	15.65	3.54	3.84
AB	4	319.02	79.75	18.04	2.37
Error	220	974.29	4.42		

Table 70: Result of LSD test

3-2-3-3 Third stage

Table 71: Significant different between courses

Mathematical analysis	Numerical analysis		Operation rese arch		Theory of diff.equations		Abstract algebra		computers		
Persona lity	Scient ifi cally	Persona lity	Scientifi cally	Persona lity	Scienti fi cally	Perso na lity	Scientifi cally	Perso na Lity	Scientifi cally	Perso na lity	Scientifi cally
10	8	10	10	10	7	7	8	10	10	10	9
6	9	4	10	3	5	2	10	5	10	7	5
7	8	10	7	7	6	8	7	10	10	10	10
10	10	10	8	10	9	10	10	10	10	10	9
10	10	10	10	10	6	5	4	10	10	10	10
9	8	9	9	8	9	7	10	10	10	9	8
10	7	5	10	10	9	10	6	10	6	10	10
10	9	5	9	6	6	7	8	8	6	9	9
6	6	8	8	8	9	8	7	7	8	10	10
10	10	10	10	10	10	10	7	10	10	10	10
10	10	10	7	10	6	10	2	10	9	10	7
10	10	10	10	10	10	4	9	10	10	10	10
9	9	10	10	0	5	10	5	10	10	9	9
10	10	8	10	0	0	0	1	10	10	2	3
8	6	8	7	7	6	2	4	9	7	8	6
9	8	9	9	8	9	9	9	9	9	10	10
7	7	7	7	6	7	10	10	10	10	9	9

Table 72: ANOVA for significant different between courses

S.O.V.	d.f.	SS	MS	F	F-Table
Rep.	16	280.29	17.5	5.9	1.57
A	5	153.218	30.64	10.35	2.21
B	1	1.257	1.257	0.4	3.84
AB	5	159.394	31.87	10.76	2.21
Error	192	569.47	2.96		

Table 73:Result of LSD test

The material	scientifically		personality		The mean	
Mathematical analysis Numerical analysis Operation research Theory of diff. equations Abstract algebra Computers	$\begin{gathered} 8.88 \\ 8.41 \\ 7.23 \\ 7 \\ 9.29 \\ 9 \end{gathered}$		8.52 8.88 7 6.88 9.11 9.47			7
The least sig.	0.84					
The mean	8.30		8.31			
The least sig.	1.51					
Best	computers	abstract algebra	mathematical analysis	numerical analysis	operation research	theory of differential equations

4-2-3-3 fourth stage

Table 74: significant different between courses

topology		Complex analysis		Functional analysis		Topological entropy		computers		History and philosophy of math.	
Persona lity	Scientifi cally	$\begin{aligned} & \text { Persona } \\ & \text { Lity } \end{aligned}$	Scientifi cally	$\begin{aligned} & \text { Persona } \\ & \text { lity } \end{aligned}$	Scientifi cally	$\begin{gathered} \text { Perso } \\ \text { na } \\ \text { lity } \\ \hline \end{gathered}$	Scientifi cally	Persona lity	Scientifi cally	$\begin{gathered} \text { Perso } \\ \text { na } \\ \text { lity } \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { Scient } \\ \text { ifi } \\ \text { cally } \\ \hline \end{array}$
10	10	10	10	10	10	10	9	10	10	10	10
9	9	10	9	8	8	6	7	8	9	10	10
3	7	7	7	7	7	5	5	7	7	8	8
10	10	7	7	5	4	3	3	4	5	10	10
10	10	10	9	10	9	5	6	7	6	10	10
10	10	9	10	10	7	6	7	10	10	10	10
10	10	8	7	8	6	10	9	10	7	8	10
10	10	10	10	9	7	5	5	5	6	10	10
7	9	9	8	8	8	6	6	8	8	10	10
10	10	10	10	10	10	10	10	10	9	10	10
10	10	10	9	10	9	10	10	10	8	10	8
9	8	7	7	7	7	8	8	6	8	10	10
8	10	10	10	8	8	8	8	7	8	6	8
10	10	10	8	10	7	10	7	10	7	10	10
9	9	9	10	10	8	9	10	9	6	10	10
10	10	10	10	9	10	8	5	8	8	10	10
8	7	6	5	6	5	7	6	6	5	8	8

Table 75: ANOVA for significant different between courses

S.O.V.	d.f.	SS	MS	F	F-Table
Rep.	16	231.08	14.4	19.2	1.57
A	5	127.47	25.49	33.9	2.21
B	1	3.32	3.32	4.4	3.84
AB	5	138.94	27.78	37.04	2.21
Error	192	144.61	.75		

Table 76: Result of LSD test

The material	scientifically		personality		The mean	
Topology	9		9.35		9.17	
Complex analysis	8.94		8.58		8.76	
Functional analysis	8.52		7.64		8.08	
Topological	7.41		7.11		7.27	
entropy	7.94		7.47		7.7	
Computers	9.41		9.5		9.46	
History and philos ophy of math.						
The least sig.	0.42					
The mean	8.536		8.275			
The least sig.	0.765					
Best	History and philosophy of math	topology	complex analysis	functional analysis	computers	topological entropy

References

1- Alkutubi,H.S.statistical analysis of cancer tumours in Iraq,Thesis,university of Tikrit,2000.

2- Alkutubi,H.S..Evaluation of cancer disease for the period (1995-2005) in Tikrit teaching hospital.,Tikrit journal of pharmaceutical science,vol.1,no.2,2005.

3- Bland,Martin.An introduction to medical statistics,third edition.,Oxford university press ,Inc.,New York, 2000.

4- Palma wilfredo..Long-memory time series,theory and method.,A John wily and Sons,Inc.puplication, 2007.

$$
\begin{aligned}
& \text { ○ـ الراوي، خاشع محمود .المدخل الى الاحصاء، ،الموصل ، جامعة الموصل، وزارة التعليم العالي والبحث العلمي، غ19 19 } \\
& \text { 7- الساهوكي ، مدحت صالح وو هيب، كريمة محمد، تطبيقات في تصميم وتحليل التجارب ، بغداد ، جامعة بغداد ، وزارة } \\
& \text { التعليم العالي والبحث العلمي ، , . } 199 \\
& \text { القرشي ، احسان كاظم ، الطر ائق المعلمية والطر ائق الامعلمية في الاختبارات الاحصائية، مطبعة الديو اني ، بغداد ، - V } \\
& \text { ^- عوض، عدنان محمد واخرون ، مقدمة في الاحصاء ، الاردن ، مركز الكتب الاردني ، r.r.r. }
\end{aligned}
$$

حول مستويات استيعاب طلبة قسم الرياضيات لموادهم الدراسية

قديل سليم الكتبي الرياضيات- كلية العلوم- جامعة الكوفه رزاق

الْملخص

في هذا البحث نم نتقدم الفروق المعنوية بين دستو يات استيعاب طلبة قسم الرياضيات لمو ادهم الدر اسية المختلفة ولكل مرحلة من مر احل شسم الرياضيات بكلية العلوم جامعة الكوفة. فضـــلا عن إيجاد نأثنير المتغيرات الأربعة (المسنوى العلمي للتّريس ،شخصيبّه،قدرته علــى النّفيــيم هو قدرته على اللتوصيل) في تحسين مستوى الاستيعاب . لتحقيق هدف البحث تم

استخدام طرق إحصـائية مناسبة ،تصميم تجارب،ارثباط و انحدار

