ISSN 1991-8690 Website: http://jsci.utq.edu.iq الترقيم الدولي ٨٦٩٠ - ١٩٩١ Email:utjsci@utq.edu.iq

On Student Comprehension For There Year Courses In Mathematics Department

Hadeel Salim AL-Kutubi Inaam Razzaq AL-Saiq

Department of Math- College of Science-Kufa University

Abstract

In this paper, we present the significant difference between the level of student comprehension for these year courses and for all student of mathematical department,college of science, Kufa university .Moreover to find out the effect of scientific, personality,ability of evaluation and ability of communication To have the goal ,we used some statistical methods like experimental design,correlation and regression analysis.

1-Introduction

We present in this study the significant difference between for there year courses and for all student of mathematical department in College of Science ,Kufa University .And find the effect of scientific ,personality ,ability of evaluation and ability of communication.

First we present the theoretical part about statistical methods like experimental design, correlation and regression analysis. In experimental design, we present the significant difference the level of student comprehension between all courses in each stage in mathematical department and then find the best from this courses.

In regression analysis ,we find the effect of scientific,personality,ability of evaluation and ability of communication in student comprehension. But in correlation,we present the positive correlation between all variable like scientific,personality,ability of evaluation and ability of communication.

Finally, we used statistical program, that is statistical to have the goal.

2-Material and Method

1-2 Linear Regression

The statistical procedure for finding this best fitting line is called the method of least squares and the line is called the regression line. The formal derivation of this procedure, which requires differential calculus, is presented in advanced statistical texts. First, it is necessary to introduce some useful new notation:

1.
$$(X_i, Y_i)$$
 =ith pair of observations

$$2 - \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}) = \sum XY - \frac{(\sum X)(\sum Y)}{n} = \sum xy$$

$$3 - \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum Y^2 - \frac{(\sum Y)^2}{n} = \sum y^2$$

$$4 - \sum_{i=1}^{n} (X_i - \overline{X})^2 = \sum X^2 - \frac{(\sum X)^2}{n} = \sum x^2$$

$$\hat{Y} = \hat{Q} + \hat{Q} + \hat{Q}$$

The sample regression line is written $Y = \beta_0 + \beta_1 X$ where the least squares estimates

$$\hat{\beta}_0 and \hat{\beta}_1 are \quad \hat{\beta}_1 = \frac{\sum xy}{\sum x^2} and \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

The values $\hat{\beta}_0 and \hat{\beta}_1$ are calculated from a sample of observations from the entire population of interest and are estimates of the "true" population values" β_0 and β_1 . As was the case with \overline{Y} and s, the values $\hat{\beta}_0 and \hat{\beta}_1$ are subject to sampling variation and therefore may vary from sample to sample the value \hat{Y} obtained for a given X is the predicted mean of the population of all possible Y values that could occur at the given value X. Just as there is a sample standard deviation associated with each \overline{Y} , there is a standard deviation associated with the regression line and \hat{Y} This quantity, denoted by $s_{y,x}$ to signify regression , is called the standard error of the estimate it is given by

$$s_{y.x} = \sqrt{SSE / (n-2)}$$

Where n is the number of pairs of observations and SSE(sum of squares for error)Is defined as

$$SSE = \sum (Y - \hat{Y})^2$$

The quantity $s_{y,x}$ is seen to be analogous to the standard deviation computed. It measures the "average" deviation of the observed values(Y) from the values(\hat{Y}) predicted by the regression line. Although we will not test hypotheses or compute confidence intervals for an estimate \hat{Y} , the standard error (S.E.) for \hat{Y} at a given X value would be.

$$S.E.(\hat{Y}) = s_{y.x} \sqrt{\frac{1}{n} + (X - \overline{X})^2 / \sum x^2}$$

We find
$$SSE = \sum (Y - \hat{Y})^2$$

Fortunately, there is a computationally equivalent formula for SSE which is both more convenient to use and gives an insight into the geometric meaning of the regression

$$SSE = \sum y^2 - \hat{\beta}_1 \sum xy$$

The variation about the regression line, as measured by SSE, is strictly less than the Y variation, as measured by $\sum y^2$, whenever $\hat{\beta}_1 \neq 0$. Consequently, whenever there is a linear relationship between X and Y we can compute a standard error based on this relationship

which is smaller than the simple standard error based on Y values alone. There is clearly no relationship between X and Y.It is for this reason that the sample regression line must be evaluated to determine if it adequately describes the relationship between the variables X and Y.This may be accomplished by testing the null hypothesis that the true slope β_1 of the population regression line is equal to zero.

The most important inference to be made concerns the "true" value of the slope, β_1 of the population line. If the true population β_1 is zero, then the value of Yin on way depends on the value of X.In other words, indicates that no linear relationship exists between X and Y. It is first necessary to determine the standard

error of $\hat{\beta}_1 is \frac{s_{y,x}}{\sqrt{\sum x}}$

Often in statistical analysis it is desirable to determine the strength of the relationship between the variables under study. The most widely used measure of this degree of

association between Y and X is provided by r, the coefficient of correlation. The formula

$$r = \frac{\sum xy}{\sqrt{\sum x^2 \sum y^2}}$$

The values of r lie in the interval $-1 \le r \le +1$ with a "large" value of r(either positive or negative)indicating a strong relationship between X and Y.A negative value of r indicates that high X values are associated with low Y values, or, low X values associated with high Y values .A positive r, on the other hand, indicates that high values of X are associated with high values of Y and low values of x are associated with low values of Y.

A further explanation of r may be seen by comparing it with $\hat{\beta}_1$, the slope of the regression line. In the formulas for r and $\hat{\beta}_1$, numerators are identical (the denominators for both will always be positive); therefore, r and $\hat{\beta}_1$ and will have the same sign. When the slope of the line is negative, the correlation is also negative thus indicating a negative , or inverse relationship between Y and X. Similarly, a positive slope and a positive relationship exists between Y and X (i.e., all points lie exactly on the regression line), then the value of r is +1. An exact negative relationship will yield an r of -1.

When $\hat{\beta}_1=0$, r=0 and hence no linear relationship between Y and X is indicated. As was the case with $\hat{\beta}_1$, the value r is the sample estimate of a true true population correlation value denoted by ρ and is subject to sampling variation. It is of interest therefore to test the hypothesis that the true population correlation equals zero. A value of $\rho = 0$ indicates that there is no linear association between the variables under study. The test statistic for testing

$$H_0: \rho = 0$$
 is
 $t = r \sqrt{\frac{n-2}{1-r^2}}$, n-2 degrees of freedom

A significant r indicates that the Y values are meaningfully related to the X values. A simpler method for testing $\rho = 0$ is by comparing the value of r with values in Table(Critical values of the correlation coefficient for different levels of significance). If the absolute value of r exceeds the tabulated value, then r is said to be significant at the given α level In the interpretation of both the regression line and the correlation coefficient, there are several important precautions that must be considered.

The first of these is that the relationship between variables must be linear. A slope(β_1) or correlation coefficient (ρ) equal to zero does not imply that no relationship exists between the variables. It simply implies that there is no linear relationship between the variables. The second precaution that must be exercised in the interpretation of linear regression and correlation concerns the danger of making inferences beyond the range of actual observations upon which the analysis is based.

The third precaution that must be considered is that correlation does not necessarily mean causation .A significant correlation indicates that the two variables X and Y tend to be associated.Except for highly controlled studies in which all extraneous factors have been removed, it is impossible to determine which variable influences which ,or even whether either of the variables is influencing the other directly.Often, a third variable may be affecting the relationship and "causing" both X and Y to vary together.

3-2 Design of Experiments

1-3-2 Completely Random Design

The completely random design(CRD). In this design, experimental units are simply chosen at random from the population to which inferences are to be made. The total sample is randomly divided into groups and the different treatments or conditions under study are then applied to the groups, one treatment or condition to a group. If the treatments differ from each other then the various treatment groups will have different mean values at the end of the experiment.

For the completely random design the general method is the analysis of variance. The process of using the ANOVA (analysis of variance) is best learned by studying examples. In a completely randomized design there are k treatments, each of which is assigned at random to a group of experimental units. The null hypothesis is whether the treatment

means are all equal.Symbolically, $H_0: \mu_1 = \mu_2 = ... = \mu_k$ which is tested to see whether the treatment groups are really subsamples from the same population (H₀ true) or whether they samples from different populations(H₀ false).

In a completely randomized design each experimental unit has an equal and independent chance of receiving any one of the treatments. The basic assumption underlying this design is that the observed values in any one group represent a random sample of all possible values of all experimental units under that particular treatment. Further, we assume that the responses are normally distributed about the treatment mean and that the variation among observations treated alike is identical for all treatments. Calculations from analysis of variance techniques are customarily displayed in an ANOVA table. Definitions and computing formulas for the terms shown are discussed below.

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Squares	F
Among treatments	k-l	SST	MST=SST/(k-1)	MST/MS E
Within treatments	N-k	SSE	MSE=SSE/(N-k)	
Total	N-1	SS		

The total sum of squares(SS) is the total of the squared deviations of the observations from overall mean of the data. It is simply the numerator in the familiar formula for calculating the variance of allthe observations considered as a single group. Symbolically,

$$SS_{Total} = \sum_{all} Y^2 - \frac{\left(\sum_{all} Y\right)^2}{N}$$

where $N=n_1+n_2+n_3+\ldots+n_k$, ,k=number of treatments
For convenience of calculations, the term $\frac{\left(\sum_{all} Y\right)^2}{N}$

Is given a special name. It is called the correction factor and is used in several calculations. Since the within treatments variation is the variation associated with observations treated alike, it is the variation associated with experimental or random error. As would be expected, to obtain a numerical value for this within group variation, we obtain a measure of the variation within each treatment group and combine these variance contributions to form a pooled estimate. Recall from the pooled t situation that the pooled variance estimate was

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

where $s_1^2 and s_2^2$ were the variances of two samples. For the k sample case the logical extension to obtain the pooled estimate of within group variation is

$$s_w^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_k - 1)s_k^2}{n_1 + n_2 + \dots + n_k - k}$$

This may be rewritten $s_w^2 = \frac{SSE}{N-k} = MSE$ (mean square error)

since $n_1 + n_2 + ... + n_k = N$, the total number of observations. This formula is genrally not used for computations unless it is desired to have available the standard error for each treatment group. The computational formula for SSE is given by

$$SS_{Within} = SSE = \sum_{all} Y^2 - \sum_{i=1}^{k} \frac{(T_i)^2}{n_i}$$

The final source of variation to be calculated is the among treatments variation (the failure of the k treatment means to be alike). The computational formula is given by

$$SS_{Among} = SST = \sum_{i=1}^{k} \frac{(T_i)^2}{n_i} - CF$$

A final calculational short –cut may be developed by utilizing the relationship $SS_{Total} = SS_{Within} + SS_{Among}$ =SSE+SST

In practice,SSE is rarely computed directly.Rather it is obtained by subtraction,that is, $SSE = SS_{Total} - SST$

The general procedure for computing the mean square column for the ANOVA is to compute first the sum of squares and enter in the ANAVA table; then compute the degrees of freedom and enter in the table. Finally to compute the mean square by dividing the degrees of freedom into the sum of squares.

$$MST = \frac{SST}{k-1}$$
 and $MSE = \frac{SSE}{N-k}$

The test of the significance of differences among means is accomplished by computing the ratio of the estimate of σ^2 based on between variation (MST) to the estimate based on within variation(MSE). This ratio is called an F statistic. The larger this ratio, the greater the difference between the two values and the less likely the null hypothesis is true.

Therefore, for large F, we reject H_0 and conclude that the means of the treatment groups significantly different; the groups are not drawn from the same population. Symbolically,

$$F = \frac{MST}{MSE}$$

If the null hypothesis is true and $\mu_A = \mu_B = \mu_C = \mu_D$, then MST and MSE are both estimates of the common variance σ^2 of the population .To determine if the calculated F value is large enough to warrant rejection of H₀ we use Table(F distribution) to locate the tabulated critical value, F_{α} .The degrees of freedom associated with F are

 γ_1 and γ_2 where

 γ_1 = df associated with numerator (MST)

 γ_2 =df associated with denominator (MSE)

The degrees of freedom associated with the numerator (γ_1) determines the appropriate column in the table; the denominator degrees of freedom(γ_2) determines the appropriate row.

2-3-2 Factorial Experiment

we have the experiment like

A	В		Y			
	b_1	Y ₁₁₁	Y_{112}	Y ₁₁₃	Y ₁₁₄	Y _{11.}
<i>a</i> ₁	b_2	Y_{121}	Y_{122}	Y_{123}	Y_{124}	Y _{12.}
a a	b_1	Y_{211}	Y_{212}	Y ₂₁₃	Y_{214}	Y _{21.}
a2	b_2	Y_{221}	Y_{222}	Y ₂₂₃	Y_{224}	Y _{22.}
						Υ

First step:

$$CF = \frac{(Y_{..})^2}{rab}, \ SST = \sum Y_{ijk}^2 - CF, \ SS(A) = \frac{\sum Y_{i..}^2}{br} - CF, \ SSt = \frac{\sum Y_{ij}^2}{r} - C,$$

SSe=SST-SSt

Second step: Constract (A×B) table

ab	<i>b</i> 1	b_2	Y
<i>a</i> ₁	Y _{11.}	Y _{12.}	Y _{1.}
a2	Y _{21.}	Y _{22.}	Y _{2.}
Y_{j_i}	Y _{1.}	Y _{2.}	Y

, SSAB= SSt - SSA - SSB
$$SSB = \frac{\sum Y_{j.}^2}{ar} - CF$$

Third step: Construct ANOVA table Table 2:ANOVA for the Factorial Experiment

S.O.V	df	SS	MS	F	F _{table}
Treatment A B AB Error	(ab-1) (a-1) (b-1) (a-1)(b-1) ab(r-1)	SSt SSA SSB SSAB SSe	SSt/(ab-1) SSA/(a-1) SSB/(b-1) SSAB/(a-1)(b-1) SSe/ab(r-1)	MSt/MSe MSA/MSe MSB/MSe MSAB/MSe	$f_{lpha,dpt,dse}$ $f_{lpha,dsAdse}$ $f_{lpha,dsBdse}$ $f_{lpha,dsABdse}$
Total	rab-1	SST			

3-3-2 Duncan Range Test:

The information required to apply this test to a set of data is as follows:

1-The mean

2- The standard error of the mean $S_{\bar{x}}$

3-The degrees of freedom on which the error mean square is based. The standard error of the mean is derived from the error mean square; that is

 $S_{\bar{x}} = \sqrt{\frac{s^2}{r}}$ where s²=the mean square for error and r= the number of replications.

4-3-2 Least Significant Difference Test (LSD):

In this test, the difference between any two means is declared significant at some desired point, usually the 5 per cent level of significance, when it exceeds the value $\sqrt{-1}$

derived from: $ts_{\bar{x}}\sqrt{2}$

In the other words, the LSD test utilizes the standard error of a difference between two means, $\sqrt{2S_{\bar{x}}}$, which serves as the least significant difference between two means when multiplied by the tabulated values of "t" at either the 5 per cent or 1 per cent levels of significance. This test is applicable only when the F-test for the homogeneity of the means in the experiment is significant.

3-The Result and Discussion 1-3-Linear Regression 1-1-3 First Stage

Table 3: Calculus

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R=.79515122 R ² =.63226546 Adjusted R ² =.49854381 F(4,11)=4.7282 p<.018 26 Std.Error of estimate: .75387					
N=16	BETA	St.Err.	В	St.Err.	t(11)	p-level
		of BETA		of B		
Intercpt			4.900301	5.349970	.91595	.379336
Personality x ₁	.580407	.276876	.877493	.418597	2.09627	.059986
Scientifically x ₂	062842	.286127	082193	.374236	21963	.830183
Connection x ₃	498641	.209303	599782	.251757	-2.38238	.036348
Evaluation x ₄	.190998	.336450	.142741	.251443	.56769	.581649

 \hat{Y} =4.900301+0.877493 x₁-0.082193 x₂ -0.599782 x₃ +0.142741 x₄ There exist significant difference between variables,

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R= .70944254 R ² =.50330871 Adjusted R ² =.32269370 F(4,11)= 2.7866 p<.08028 Std.Error of estimate: 2.3374 2.3374					
N=16	BETA	St.Err.of	В	St. Err.	t(11)	p-level
		BETA		of B		_
Intercpt			2.399426	2.032682	1.18042	.262728
Personality x ₁	278517	.264932	093053	.088514	-1.05127	.315680
Scientifically x ₂	484462	.394542	517606	.421535	-1.22791	.245108
Connection x ₃	.363616	.606996	.327194	.546196	.59904	.561279
Evaluation x ₄	.636563	.465529	.670881	.490626	1.36740	.198791

Table 4:	Foundation	of Mathematics
----------	------------	----------------

 $\hat{Y}{=}2.399426{-}0.093053~x_1$ -0.517606 x_2 +0.327194 x_3 +0.670881 x_4 There exist significant difference between variables x_1 , x_2 , x_4

Table 5: Linear Algebra I

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R=.61636682 R ² =.37990805 Adjusted R ² =.15442007 F(4,11)= 1.6848 p<.22305 Std.Error of estimate: 1.9252					
N=16	BETA	St.Err.of	В	St. Err.	t(11)	p-level
		BETA		ofB		
Intercpt			4.342661	6.247706	.69508	.501424
Personality x ₁	.047570	.722151	.074233	1.126922	.06587	.948661
Scientifically x ₂	1.062851	.934662	.898822	.790417	1.13715	.279640
Connection x ₃	754770	.535227	731825	.518956	-1.41019	.186130
Evaluation x ₄	.091831	.287170	.111002	.347121	.31978	.755127

 $\hat{Y}{=}4.342661{+}\ 0.74233\ x_1{+}0.898822\ x_2\ {-}0.731825\ x_3\ {+}0.111002\ x_4$

There exist significant in x_2 .

Table 6 : General Physics

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R=.73373907 R ² =.53837302 Adjusted R ² =.37050866 F(4,11)=3.2072 p<.05642 Std. Error of estimate: 2.0170					
N=16	BETA	St.Err.of	В	St. Err.	t(11)	p-level
		BETA		of B		
Intercpt			.24023	2.489126	.09651	.924850
Personality x ₁	.81001	.401552	1.21620	.602911	2.01721	.068745
Scientifically x ₂	.48805	.568690	.58271	.678996	.85819	.409097
Connection x ₃	-1.33377	.578295	-1.45239	.629725	-2.30639	.041562
Evaluation x4	.49812	.468232	.48575	.456605	1.06384	.310197

 \hat{Y} =0.24023 + 1.2162 x₁ +0.58271 x₂ -1.45239 x₃ +0.48575 x₄ There exist significant different between some variable like x₁,x₃,x₄

Table 7: computers

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R=.54628748 R ² =.29843001 Adjusted R ² =.04331365 F(4,11)=1.1698 p<.37603 Std. Error of estimate: 1.3467					
N=16	BETA	St.Err.of BETA	В	St.Err. of B	t(11)	p-level
		DEIA		01 D		
Intercpt			8.310100	1.663374	4.99593	.000405
Personality x1	675218	.430883	364193	.232405	-1.56706	.145398
Scientifically x ₂	.035114	.330761	.025736	.242425	.10616	.917367
Connection x ₃	1.085462	.630661	.659920	.383418	1.72115	.113190
Evaluation x4	417650	.523779	274669	.344466	79738	.442104

 $\hat{Y}{=}8.310100{-}0.364193~x_1$ + 0.025736 x_2 +0.65992 x_3 -0.274669 x_4 There exist significant between $~x_1{,}x_3$

Table 8: English

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y $R=.47532676$ R^2 $=.22593552$ Adjusted R^2 $=$ $F(4,11)=.80268$ $p<.54832$ Std.Error of estimate: .64639					
N=16	BETA	St.Err.of	В	St. Err.	t(11)	p-level
		BETA		of B		
Intercpt			5.883375	3.328292	1.767686	.104804
Personality x1	.095895	.270247	.058531	.164950	.354842	.729418
Scientifically x ₂	.130625	.336864	.114334	.294853	.387766	.705587
Connection x ₃	.208684	.392891	.146792	.276365	.531151	.605873
Evaluation x ₄	.195304	.423120	.070359	.152430	.461580	.653377

 $\hat{Y}{=}5.883375 + 0.058531 x_1 + 0.114334 x_2 + 0.146792 x_3 + 0.070359 x_4$ Not significant difference between variables

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

Table 9: Human Rights

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R=.96954541 R ² =.94001830 Adjusted R ² =.91820677 F(4,11)=43.097 p<.00000 Std.Error of estimate: .80130 .80130					
N=16	BETA	St.Err.of	В	St.Err.	t(11)	p-level
		BETA		of B		
Intercpt			-2.35932	1.527691	-1.54437	.150765
Personality x ₁	397012	.216759	42295	.230921	-1.83158	.094206
Scientifically x ₂	.2937.50	.162591	.55488	.307128	1.80669	.098214
Connection x ₃	105422 1.195337	.358605	12716	.432536	29398	.774248
Evaluation x ₄	1.1775)	.193167	1.24813	.201698	6.18811	.000068

 $\hat{Y}=-2.35932-0.42295\ x_1+0.55488\ x_2-0.12716\ x_3+1.24813\ x_4$ There exist significant difference between some variable like x_1,x_2,x_4

2-1-3-Second Stage Table 10: Advanced Calculus

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R= .66833597 R ² =.44667297 Adjusted R ² =.32371141 F(4,18)=3.6326 p<.02441 Std.Error of estimate: 1.4841					
N=23	BETA	St.Err.of	В	St.Err.	t(18)	p-level
		BETA		of B		
Intercpt			3.46112	1.24527	2.7794	.01237
Personality x ₁	32203	.23691	26326	.19367	-1.3593	.19083
Scientifically x ₂	.01129	.25960	.00870	.20010	.0435	.96579
Connection x ₃	.44374	.29517	.38388	.25535	1.5034	.15009
Evaluation x ₄	.42544	.30971	.40982	.29834	1.3736	.18642

 \hat{Y} =3.46112 -0.26326 x₁ +0.00870 x₂+0.38388 x₃+0.40982 x₄ There exist significant deference in x₁, x₃,x₄

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R= .75913894 R ² = .57629194 Adjusted R ² = .48213459 F(4,18)=6.1205 p<.00272 Std.Error of estimate: 1.4170					
N= 23	BETA	St.Err.of	В	St.Err.	t(18)	p-level
		BETA		of B		
Intercpt			283878	1.497877	189520	.851806
Personality x ₁	194176	.317763	174263	.285177	611070	.548793
Scientifically x ₂	.451409	.225444	.571050	.285196	2.002310	.060552
Connection x ₃	.533568	.258258	.519714	.251552	2.066030	.053526
Evaluation x ₄	.110531	.242288	.112916	.247515	.456199	.653703

Table 11: Linear AlgebraII

 $\hat{Y}{=}$ -0.283878 -0.174263 x_1 +0.57105 x_2 +0.519714 x_3 + 0.112916 x_4 There exist significant different in x_2 , x_3

Table 12: Probability and Statistics

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R=.91697110 R ² =.84083600 Adjusted R ² =.80546622 F(4,18)=23.773 p<.00000 Std.Error of estimate: 1.0885					
N= 23	BETA	St.Err.of BETA	В	St.Err. of B	t(18)	p-level
		DBIII				
Intercpt			.315994	.694348	.455094	.654483
Personality x ₁	011412	.139654	009588	.117335	081714	.935776
Scientifically x ₂	054116	.132917	051968	.127642	407139	.688707
Connection x ₃	.759879	.140620	.660274	.122187	5.403792	.000039
Evaluation x ₄	.273014	.129938	.311598	.148301	2.101119	.049981

 $\hat{Y}{=}~0.315994$ -0.009588 x1-0.051968 x2+0.660274 x3+0.311598 x4 There exist significant difference in x3,x4

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R= .83630073 R ² =.69939891 Adjusted R ² =.63259867 F(4,18)=10.470 p<.00015 Std.Error of estimate: .89532					
N= 23	BETA	St.Err.of BETA	В	St.Err. of B	t(18)	p-level
Intercpt			.132886	1.582499	.08397	.934005
Personality x1	349679	.201540	358558	.206657	-1.73504	.099823
Scientifically x ₂	.799151	.205998	.741599	.191163	3.87941	.001099
Connection x ₃	.309088	.144439	.345415	.161414	2.13993	.046309
Evaluation x ₄	.196178	.145449	.226801	.168154	1.34877	.194137

 $\hat{Y}{=}0.132886$ +0.206657 x_1 +0.191163 x_2 +0.161414 x_3 +0.168154 x_4 There exist significant difference in all variable

Table 14: Computers

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R=.92965996 R ² =.86426764 Adjusted R ² =.83410489 F(4,18)=28.653 p<.00000 Std.Error of estimate: .79546 .79546					
N= 23	BETA	St.Err.of	В	St.Err.	t(18)	p-level
		BETA		ofB		
Intercpt			1.277132	1.730030	.738214	.469901
Personality x ₁	071417	.097477	092120	.125734	732660	.473200
Scientifically x ₂	108434	.118689	179539	.196519	913598	.373004
Connection x ₃	.958168	.118136	.976032	.120339	8.110691	.000000
Evaluation x ₄	.094565	.096684	.172206	.176065	.978082	.340997

 $\hat{Y}{=}1.277132$ -0.092120 x_1 -0.179539 x_2 +0.976032 x_3 +0.172206 x_4 There exist significant difference in x_3

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

Table 1	5:]	Democratic	and	Freedom
---------	------	------------	-----	---------

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R= .94462445 R ² =.89231535 Adjusted R ² =.86838543 F(4,18)=37.289 p<.00000 Std.Error of estimate: .86069					
N= 23	BETA	St.Err.of	В	St. Err.	t(18)	p-level
		BETA		of B		
Intercpt			094120	.730230	128891	.898873
Personality x ₁	.257904	.198436	.217294	.167190	1.299680	.210110
Scientifically x ₂	.631863	.133769	.677395	.143408	4.723538	.000169
Connection x ₃	.037757	.217449	.033081	.190520	.173637	.864088
Evaluation x ₄	.077329	.172434	.068914	.153670	.448456	.659175

 $\hat{Y}{=}$ -0.09412 + 0.217294 x_1 +0.677395 x_2 +0.033081 x_3 + 0.68914 x_4 There exist significant difference in x_1 , x_2

3-1-3- Third stage Table 16: Mathematical Analysis

STAT. MULTIPLE REGRESS.	R=.63739402	Regression Summary for Dependent Variable:Y R= .63739402 R ² = .40627114 Adjusted R ² = .20836152 F(4,12)=2.0528 p< .15059 Std.Error of estimate: 1.0461				
N= 17	BETA	St.Err.of BETA	В	St.Err. of B	t(12)	p-level
Testa and the		DBIII	000104		20.00.0	745540
Intercpt			.820134	2.688448	.305059	.765548
Personality x ₁	.259674	.287115	.204207	.225786	.904425	.383568
Scientifically x ₂	038910	.286030	032230	.236927	136034	.894050
Connection x ₃	.625396	.328871	.597448	.314175	1.901643	.081492
Evaluation x ₄	001677	.330260	001020	.200911	005077	.996032

 $\hat{Y}{=}0.820134$ + 0.204207 x_1 -0.032230 x_2 +0.597448 x_3 -0.001020 x_4 There exist significant difference in x_3

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R= .87452082 R ² = .76478666 Adjusted R ² = .68638221 F(4,12)=9.7544 p<.00095 Std.Error of estimate: 1.0749					
N= 17	BETA	St.Err.of BETA	В	St.Err. of B	t(12)	p-level
Intercpt			4.446973	2.666341	1.66782	.121215
Personality x1	195671	.174153	187951	.167283	-1.12356	.283176
Scientifically x ₂	024296	.144371	036749	.218362	16829	.869157
Connection x ₃	.150006	.336918	.105182	.236242	.44523	.664080
Evaluation x ₄	.745259	.336880	.609109	.275336	2.21224	.047091

Table 17: Numerical Analysis

 $\hat{Y}{=}4.446973$ -0.187951 x_1 -0.036749 x_2 +0.105182 x_3 +0.609109 x_4 There exist significant difference in x_1 , x_4

Table 18: Operation Research

STAT. MULTIPLE REGRESS.	R=.68435883	Regression Summary for Dependent Variable:Y R= .68435883 R ² = .46834700 Adjusted R ² = .29112934 F(4,12)=2.6428 p< .08604 Std.Error of estimate: 1.6240				
N=17	BETA	St.Err.of	В	St. Err.	t(12)	p-level
		BETA		of B		
Intercpt			2.918298	1.290035	2.262185	.043041
Personality x ₁	100527	.331817	057642	.190263	302960	.767108
Scientifically x ₂	.257378	.472492	.198580	.364553	.544724	.595922
Connection x ₃	.504196	.350910	.414137	.288231	1.436822	.176326
Evaluation x ₄	.028329	.333167	.017395	.204579	.085029	.933641

 \hat{Y} =2.918298 -0.057642 x_1 +0.198580 x_2 +0.414137 x_3 +0.017395 x_4 There exist significant difference in x_3

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R= .84634149 R ² =.71629393 Adjusted R ² =.62172523 F(4,12)=7.5743 p<.00276 Std.Error of estimate: 1.4385					
N=17	BETA	St.Err.of	В	St.Err.	t(12)	p-level
		BETA		of B		
Intercpt			972098	1.520931	639147	.534738
Personality x ₁	.088760	.163292	.068314	.125677	.543567	.596693
Scientifically x ₂	.449471	.195896	.352302	.153547	2.294430	.040605
Connection x ₃	.246333	.155700	.202864	.128225	1.582098	.139612
Evaluation x ₄	.418902	.189717	.379817	.172016	2.208037	.047447

Table 19:	Theory of	Differential	Equation
------------------	-----------	--------------	----------

 $\hat{Y}{=}$ -0.972098 +0.068314 x_1 +0.352302 x_2 +0.202864 x_3 +0.379817 x_4 There exist significant difference in x_2 , x_3 , x_4

 Table 20: Abstract Algebra

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R= .86473883 R ² = .74777325 Adjusted R ² = .66369767 F(4,12)=8.8941 p<.00141 Std.Error of estimate: 1.2048					
N=17	BETA	St.Err.of	В	St. Err.	t(12)	p-level
		BETA		of B		
Intercpt			1.514603	2.555551	.592672	.564403
Personality x ₁	.005750	.158242	.008510	.234193	.036337	.971611
Scientifically x ₂	149893	.222592	214368	.318338	673396	.513456
Connection x ₃	.547646	.198889	.365478	.132731	2.753525	.017488
Evaluation x ₄	.492068	.272959	.557072	.309018	1.802716	.096585

 $\hat{Y}{=}1.514603 +\! 0.008510 \; x_1 \! \cdot \! 0.214368 \; x_2 +\! 0.365478 \; x_3 +\! 0.557072 \; x_4$ There exist significant difference in x₃,x₄

J.Thi-Qar Sci. No. (3)	Vol.1	Janu. /2009
------------------------	-------	-------------

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R= .89207711 R ² = .79580156 Adjusted R ² = .72773542 F(4,12)=11.692 p<.00042 Std.Error of estimate: .49623					
N= 17	BETA	St.Err.of	В	St.Err.	t(12)	p-level
		BETA		of B		
Intercpt			5.648710	1.897063	2.97761	.011537
Personality x ₁	030495	.200231	033325	.218809	15230	.881481
Scientifically x ₂	.002117	.284268	.000900	.120811	.00745	.994179
Connection x ₃	1.191049	.292939	.597348	.146918	4.06586	.001565
Evaluation x ₄	395254	.228385	168351	.097276	-1.73065	.109121

Table 21: Computers

 $\hat{Y}{=}5.648710$ -0.033325 x_1 +0.000900 x_2 +0.597348 x_3 -0.168351 x_4 There exist significant difference in x_3 , x_4

4-1-3– Fourth Stage Table 22: Topology

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R=.72376181 R ² =.52383116 Adjusted R ² =.36510822 F(4,12)=3.3003 p<.04829 Std.Error of estimate: 1.4429					
N= 17	BETA	St.Err.of	В	St. Err.	t(12)	p-level
		BETA		of B		
Intercpt			.183937	3.409753	.053944	.957867
Personality x ₁	.314766	.327679	.316187	.329158	.960592	.355714
Scientifically x ₂	012411	.374920	021260	.642221	033104	.974136
Connection x ₃	.446304	.336844	.526072	.397049	1.324956	.209862
Evaluation x ₄	.034239	,32 <i>7</i> 759	.036756	.351857	.104463	.918527

 $\hat{Y}{=}0.183937$ +0.316187 x_1 -0.021260 x_2 +0.526072 x_3 +0.036756 x_4 There exist significant difference in x_3

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R=.88970708 R ² =.79157869 Adjusted R ² =.72210492 F(4,12)=11.394 p<.00047 Std.Error of estimate: .96422 .96422					
N= 17	BETA	St.Err.of	В	St.Err.	t(12)	p-level
		BETA		of B		
Intercpt			-2.17639	1.622206	-1.34162	.204556
Personality x ₁	.510122	.282165	.67097	.371135	1.80788	.095738
Scientifically x ₂	403430	.290708	47808	.344501	-1.38775	.190442
Connection x ₃	.592253	.234904	.65325	.259096	2.52125	.026847
Evaluation x ₄	.285409	.170792	.31313	.187382	1.67109	.120557

Table 23: Complex Analysis

 $\hat{Y}=$ -2.17639 +0.67097 x_1 -0.47808 x_2 +0.65325 x_3 +0.31313 x_4 There exist significant difference in all variable.

Table 24: Functional Analysis

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R=.73955840 R ² =.54694663 Adjusted R ² =.39592884 F(4,12)=3.6217 p<.03703 Std.Error of estimate: 1.3495 1.3495					
N= 17	BETA	St.Err.of	В	St.Err.	t(12)	p-level
		BETA		of B		
Intercpt			.626249	2.020723	.309913	.761943
Personality x ₁	.056205	.314574	.061540	.344431	.178670	.861178
Scientifically x ₂	040969	.311451	042006	.319337	131542	.897526
Connection x ₃	.124653	.327540	.134341	.352995	.380574	.710171
Evaluation x ₄	.646305	.254409	.599827	.236114	2.540414	.025919

 $\hat{Y}{=}0.626249$ +0.061540 x_1 -0.042006 x_2 +0.134341 x_3 +0.599827 x_4 There exist significant difference in x_4

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R=.83510172 R ² =.69739489 Adjusted R ² =.59652652 F(4,12)=6.9139 p<.00398 Std.Error of estimate: 1.3241						
N= 17	BETA	BETA St.Err.of B St.Err. t(12) p-level BETA of B					
Intercpt			.260684	1.215069	.214542	.833727	
Personality x1	225311	.317834	209895	.296088	708895	.491932	
Scientifically x ₂	.559908	.339628	.567151	.344022	1.648590	.125145	
Connection x ₃	.403491	.252747	.382107	.239352	1.596421	.136378	
Evaluation x ₄	.148043	.237488	.116890	.187513	.623371	.544708	

Table 25: Topological Entropy

 $\hat{Y}{=}~0.260684$ -0.209895 x1 +0.567151 x2 +0.382107 x3 +0.116890 x4 There exist significant difference in x2 ,x3

Table 26: Computers

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R= .74445425 R ² =.55421214 Adjusted R ² =.40561618 F(4,12)=3.7297 p<.03395 Std.Error of estimate: 1.7125					
N= 17	BETA	BETA St.Err.of B St.Err. t(12) p-lev BETA of B				
Intercpt			-1.03502	2.478862	417540	.683657
Personality x ₁	.209067	.283645	.23795	.322828	.737074	.475242
Scientifically x ₂	.220965	.323891	.31750	.465391	.682221	.508054
Connection x ₃	.376143	.456787	.49025	.595356	.823452	.426314
Evaluation x ₄	.019149	.309416	.02456	.396802	.061888	.951671

 $\hat{Y}{=}$ -1.03502 +0.23795 x_1 +0.31750 x_2 +0.49025 x_3 +0.02456 x_4 Not exist significant difference in variable

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

STAT. MULTIPLE REGRESS.	Regression Summary for Dependent Variable:Y R=.95139510 R ² =.90515264 Adjusted R ² =.87353685 F(4,12)=28.630 p<.00000 Std.Error of estimate: .52552					
N=17	BETA	St.Err.of	В	St.Err.	t(12)	p-level
		BETA		of B		
Intercpt			.747013	1.673278	.44644	.663231
Personality x ₁	258366	.153343	324739	.192737	-1.68488	.117818
Scientifically x ₂	049752	.201411	084077	.340365	24702	.809068
Connection x ₃	1.221691	.187196	1.442613	.221047	6.52628	.000028
Evaluation x ₄	118560	.238990	140330	.282872	49609	.628793

Table 27: History and Philosophy

 \hat{Y} = 0.747013 -0.324739 x₁ -0.084077 x₂ +1.442613 x₃ -0.140330 x₄ There exist significant difference in x₃.

2-3 Correlations 1-2-3 First Stage

Table 28: Calculus

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	X3	X4	Y
Personality x ₁	1.000000	138128	.093600	.535861	.644763
Scientifically x ₂	138128	1.000000	.428010	.557017	250046
Connection x ₃	.093600	.428010	1.000000	.429635	389152
Evaluation x ₄	.535861	.557017	.429635	1.000000	.252778
Understanding Y	.644763	250046	389152	.252778	1.000000

There exist positive correlation between $(x_1 \text{ and } x_4)$, $(x_2 \text{ and } x_4)$

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

Table 29: Foundation of Mathematics

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	X3	X4	Y
Personality x ₁	1.000000	159304	279517	.042195	276117
Scientifically x ₂	159304	1.000000	.838243	.711901	.317875
Connection x ₃	279517	.838243	1.000000	.841069	.570763
Evaluation x ₄	.042195	.711901	.841069	1.000000	.585748
Understanding Y	276117	.317875	.570763	.585748	1.000000

There exist strong positive correlation between $(x_2 \text{ and } x_3)$, $(x_2 \text{ and } x_4)$, $(x_3 \text{ and } x_4)$ **Table 30: Linear AlgebraI**

STAT.	Correlations				
MULTIPLE					
REGRESS.					
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	Х3	X4	Y
Personality x1	1.000000	.938325	.753658	.372954	.510280
Scientifically x ₂	.938325	1.000000	.859714	.415883	.496792
Connection x ₃	.753658	.859714	1.000000	.548130	.245165
Evaluation x ₄	.372954	.415883	.548130	1.000000	.137882
Understanding Y	.510280	.496792	.245165	.137882	1.000000

There exist strong positive correlation between $(x_1 \text{ and } x_2)$, $(x_1 \text{ and } x_3)$, $(x_2 \text{ and } x_3)$ **Table 31: General Physics**

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	X3	X4	Y
Personality x ₁	1.000000	.850686	.750554	.630602	.538238
Scientifically x ₂	.850686	1.000000	.885209	.810741	.400298
Connection x ₃	.750554	.885209	1.000000	.891415	.150246
Evaluation x ₄	.630602	.810741	.891415	1.000000	.215656
Understanding Y	.538238	.400298	.150246	.215656	1.000000

There exist strong positive correlation between $(x_1 \text{ and } x_3)$, $(x_2 \text{ and } x_3)$, $(x_2 \text{ and } x_1)$, $(x_2 \text{ and } x_4)$, $(x_3 \text{ and } x_4)$

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

Table 32: Computers

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	Х3	X4	Y
Personality x ₁	1.000000	.397929	.791325	.751538	116172
Scientifically x ₂	.397929	1.000000	.625792	.523332	.227129
Connection x ₃	.791325	.625792	1.000000	.869958	.209780
Evaluation x ₄	.751538	.523332	.869958	1.000000	.037580
Understanding Y	116172	.227129	.209780	.037580	1.000000

There exist positive correlation between $(x_1 \text{ and } x_3)$, $(x_1 \text{ and } x_4)$, $(x_3 \text{ and } x_4)$, $(x_2 \text{ and } x_3)$. **Table 33: English**

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X_2	Х3	X4	Y
Personality x ₁	1.000000	056237	036155	.078696	.096374
Scientifically x ₂	056237	1.000000	.518476	.597456	.350115
Connection x ₃	036155	.518476	1.000000	.725542	.414644
Evaluation x ₄	.078696	.597456	.725542	1.000000	.432302
Understanding Y	.096374	.350115	.414644	.432302	1.000000

There exist positive correlation between $(x_3 \text{ and } x_4)$ only.

Table 34: Human Rights

STAT.	Correlations				
MULTIPLE					
REGRESS.					
Variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	X3	X4	Y
Personality x ₁	1.000000	.777607	.939854	.831336	.726057
Scientifically x ₂	.777607	1.000000	.836863	.603023	.617623
Connection x ₃	.939854	.836863	1.000000	.887751	.828436
Evaluation x ₄	.831336	.603023	.887751	1.000000	.948837
Understanding Y	.726057	.617623	.828436	.948837	1.000000

There exist strong positive correlation between $(x_1 \text{ and } x_3)$, $(x_1 \text{ and } x_4)$, $(x_1 \text{ and } x_2)$, $(x_2 \text{ and } x_3)$, $(x_3 \text{ and } x_4)$.

STAT. MULTIPLE REGRESS.	Correlations				
Variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	Х3	X4	Y
Personality x ₁	1.000000	.597598	.603794	.606856	.210821
Scientifically x ₂	.597598	1.000000	.647378	.693819	.401287
Connection x ₃	.603794	.647378	1.000000	.781265	.588987
Evaluation x ₄	.606856	.693819	.781265	1.000000	.584521
Understanding Y	.210821	.401287	.588987	.584521	1.000000

2-2-3 Second Stage Table 35: Advanced Calculus

There exist positive correlation between $(x_3 \text{ and } x_4)$ only.

Table 36: Linear AlgebraII

STAT.	Correlations				
MULTIPLE					
REGRESS.					
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	Х3	X4	Y
Personality x ₁	1.000000	.720420	.747170	.715882	.608821
Scientifically x ₂	.720420	1.000000	.449669	.470958	.603505
Connection x ₃	.747170	.449669	1.000000	.730312	.672193
Evaluation x ₄	.715882	.470958	.730312	1.000000	.573790
Understanding Y	.608821	.603505	.672193	.573790	1.000000

There exist positive correlation between $(x_1 \text{ and } x_2)$, $(x_1 \text{ and } x_3)$, $(x_1 \text{ and } x_4)$, $(x_3 \text{ and } x_4)$ **Table 37: Probability and Statistics**

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	Х3	X4	Y
Personality x ₁	1.000000	.652383	.652594	.582447	.608193
Scientifically x ₂	.652383	1.000000	.606739	.557972	.551822
Connection x ₃	.652594	.606739	1.000000	.641947	.894858
Evaluation x ₄	.582447	.557972	.641947	1.000000	.723974
Understanding Y	.608193	.551822	.894858	.723974	1.000000

There exist weakness positive correlation between all variable

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

STAT. MULTIPLE REGRESS.			Correlations		
variable	Personality	Scientifically	Connection	Evaluation	Understanding
Variauic	X1	X2	X3	X4	Y
Personality x ₁	1.000000	.757618	.253261	.366159	.405884
Scientifically x ₂	.757618	1.000000	.364470	.348867	.715321
Connection x ₃	.253261	.364470	1.000000	.358101	.582046
Evaluation x ₄	.366159	.348867	.358101	1.000000	.457622
Understanding Y	.405884	.715321	.582046	.457622	1.000000

Table 38: Differential Equations

There exist positive correlation between $(x_1 \text{ and } x_2)$ only.

Table 39: Computers

STAT. MULTIPLE REGRESS.			Correlations		
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	X3	X4	Y
Personality x1	1.000000	.452593	.247808	.113186	.127651
Scientifically x ₂	.452593	1.000000	.604732	.232776	.460691
Connection x ₃	.247808	.604732	1.000000	.437314	.916251
Evaluation x4	.113186	.232776	.437314	1.000000	.480261
Understanding Y	.127651	.460691	.916251	.480261	1.000000

Not correlation between variables.

Table 40: Democratic and Freedom

STAT. MULTIPLE REGRESS.			Correlations		
variable	Personality	Scientifically	Connection	Evaluation	Understanding
Variauic	X1	X2	Х3	X4	Y
Personality x ₁	1.000000	.772268	.905899	.868964	.847271
Scientifically x ₂	.772268	1.000000	.811000	.729967	.918102
Connection x ₃	.905899	.811000	1.000000	.875675	.851548
Evaluation x ₄	.868964	.729967	.875675	1.000000	.795740
Understanding Y	.847271	.918102	.851548	.795740	1.000000

There exist strong positive correlation between $(x_1 \text{ and } x_2)$, $(x_1 \text{ and } x_3)$, $(x_1 \text{ and } x_4)$, $(x_2 \text{ and } x_3)$

 $(x_2 \text{ and } x_4), (x_3 \text{ and } x_4)$

		Correlations		
		CONCIALIONS		
Personality	Scientifically	Connection	Evaluation	Understanding
X1	X_2	X3	X4	Y
1.000000	.590762	103897	.124689	.171502
.590762	1.000000	.134692	.274737	.198271
103897	.134692	1.000000	.707897	.591989
.124689	.274737	.707897	1.000000	.462727
.171502	.198271	.591989	.462727	1.000000
	x ₁ 1.000000 .590762 103897 .124689	x1 x2 1.000000 .590762 .590762 1.000000 103897 .134692 .124689 .274737 .171502 .198271	x1 x2 x3 1.000000 .590762 103897 .590762 1.000000 .134692 103897 .134692 1.000000 .124689 .274737 .707897 .171502 .198271 .591989	Personality Scientifically Connection Evaluation x1 x2 x3 x4 1.000000 .590762 103897 .124689 .590762 1.000000 .134692 .274737 103897 .134692 1.000000 .707897 .124689 .274737 .707897 1.000000 .171502 .198271 .591989 .462727

3-2-3 Third Stage Table 41: Mathematical Analysis

There exist strong positive correlation between $(x_3 \text{ and } x_4)$ only.

Table 42: Numerical Analysis

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	X3	X4	Y
Personality x1	1.000000	056547	124353	.184123	075732
Scientifically x ₂	056547	1.000000	138654	061686	080003
Connection x ₃	124353	138654	1.000000	.857342	.816648
Evaluation x ₄	.184123	061686	.857342	1.000000	.839336
Understanding Y	075732	080003	.816648	.839336	1.000000

There exist strong positive correlation between $(x_3 \text{ and } x_4)$ only.

Table 43: Operation Research

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	X3	X4	Y
Personality x ₁	1.000000	.758037	.473770	.529876	.348458
Scientifically x ₂	.758037	1.000000	.755853	.740144	.583239
Connection x ₃	.473770	.755853	1.000000	.710196	.671227
Evaluation x ₄	.529876	.740144	.710196	1.000000	.523636
Understanding Y	.348458	.583239	.671227	.523636	1.000000

There exist positive correlation between $(x_1 \text{ and } x_2)$, $(x_2 \text{ and } x_3)$, $(x_2 \text{ and } x_4)$, $(x_3 \text{ and } x_4)$

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	Х3	X4	Y
Personality x ₁	1.000000	.229872	025132	074567	.154654
Scientifically x ₂	.229872	1.000000	.145325	.548297	.735355
Connection x ₃	025132	.145325	1.000000	.096348	.349782
Evaluation x ₄	074567	.548297	.096348	1.000000	.682460
Understanding Y	.154654	.735355	.349782	.682460	1.000000

Not correlation between all variables.

Table 45: Abstract Algebra

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	X3	X4	Y
Personality x ₁	1.000000	.227160	.374373	.345370	.346670
Scientifically x ₂	.227160	1.000000	.310552	.733682	.382507
Connection x ₃	.374373	.310552	1.000000	.628101	.812317
Evaluation x ₄	.345370	.733682	.628101	1.000000	.728057
Understanding Y	.346670	.382507	.812317	.728057	1.000000

There exist positive correlation between $(x_2 \text{ and } x_4)$.

Table 46: Computers

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	X3	X4	Y
Personality x ₁	1.000000	.645660	.191600	.166502	.133266
Scientifically x ₂	.645660	1.000000	.722617	.590141	.609844
Connection x ₃	.191600	.722617	1.000000	.820602	.862389
Evaluation x ₄	.166502	.590141	.820602	1.000000	.578295
Understanding Y	.133266	.609844	.862389	.578295	1.000000

There exist positive correlation between $(x_2 \text{ and } x_3)$, $(x_3 \text{ and } x_4)$

4-2-3 Fourth Stage
Table 47: Topology

STAT.	Correlations				
MULTIPLE					
REGRESS.					
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	X3	X4	Y
Personality x1	1.000000	.754247	.722113	.678213	.650908
Scientifically x ₂	.754247	1.000000	.758299	.762771	.589548
Connection x ₃	.722113	.758299	1.000000	.709303	.688474
Evaluation x ₄	.678213	.762771	.709303	1.000000	.554815
Understanding Y	.650908	.589548	.688474	.554815	1.000000

There exist positive correlation between $(x_1 \text{ and } x_2)$, $(x_1 \text{ and } x_3)$, $(x_2 \text{ and } x_3)$, $(x_2 \text{ and } x_4)$, $(x_3 \text{ and } x_4)$

Table 48: Complex Analysis

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	X3	X4	Y
Personality x1	1.000000	.861564	.785965	.615287	.803639
Scientifically x ₂	.861564	1.000000	.805795	.601497	.684979
Connection x ₃	.785965	.805795	1.000000	.474741	.803604
Evaluation x ₄	.615287	.601497	.474741	1.000000	.637785
Understanding Y	.803639	.684979	.803604	.637785	1.000000

There exist positive correlation between $(x_1 \text{ and } x_2)$, $(x_1 \text{ and } x_3)$, $(x_2 \text{ and } x_3)$ **Table 49: Functional Analysis**

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	X3	X4	Y
Personality x ₁	1.000000	.748880	.676344	.400273	.368531
Scientifically x ₂	.748880	1.000000	.669741	.434016	.365114
Connection x ₃	.676344	.669741	1.000000	.642821	.550687
Evaluation x ₄	.400273	.434016	.642821	1.000000	.731151
Understanding Y	.368531	.365114	.550687	.731151	1.000000

There exist positive correlation between $(x_1 \text{ and } x_2)$.

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

Table 50: Topological Entropy

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	Х3	X4	Y
Personality x1	1.000000	.843840	.685913	.719989	.630511
Scientifically x ₂	.843840	1.000000	.766916	.685431	.780699
Connection x ₃	.685910	.766916	1.000000	.618674	.769940
Evaluation x ₄	.719989	.685431	.618674	1.000000	.619230
Understanding Y	.630511	.780699	.769940	.619230	1.000000

There exist positive correlation between $(x_1 \text{ and } x_2)$, $(x_1 \text{ and } x_4)$, $(x_2 \text{ and } x_3)$

Table 51: Computers

STAT. MULTIPLE REGRESS.	Correlations				
variable	Personality	Scientifically	Connection	Evaluation	Understanding
	X1	X2	X3	X4	Y
Personality x ₁	1.000000	.631238	.698592	.406768	.619108
Scientifically x ₂	.631238	1.000000	.796830	.583562	.663833
Connection x ₃	.698592	.796830	1.000000	.762242	.712863
Evaluation x4	.406768	.583562	.762242	1.000000	.519849
Understanding Y	.619108	.663833	.712863	.519849	1.000000

There exist positive correlation between $(x_2 \text{ and } x_3)$, $(x_3 \text{ and } x_4)$

Table 52: History and Philosophy of Mathematics

STAT.	Correlations				
MULTIPLE					
REGRESS.					
variable	Personality	scientifically	connection	evaluation	understanding
personality	1.000000	.686555	.694618	.621119	.482445
scientifically	.686555	1.000000	.564382	.828363	.364154
connection	.694618	.564382	1.000000	.790590	.920413
evaluation	.621119	.828363	.790590	1.000000	.645608
understanding	.482445	.364154	.920413	.645608	1.000000

There exist positive correlation between $(x_2 \text{ and } x_4)$, $(x_3 \text{ and } x_4)$

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	---------	-------	-------------

3-3 Design of Experiments

1-3-3 Completely Random Design 1-1-3-3 First stage

Table 53:significant different between courses.

The order	calculus	Foundation of math.	Linear Algebra I	General physics	computers	English	rights
1	7	8	8	9	5	9	б
2	6	0	8	5	10	10	10
3	9	4	7	9	10	9	8
4	9	0	5	5	0	10	4
5	8	6	8	5	9	10	8
б	9	6	8	10	10	10	10
7	7	0	8	5	8	9	3
8	9	8	10	10	9	9	10
9	9	7	10	8	8	8	10
10	8	4	7	7	10	10	2
11	9	6	8	9	7	10	10
12	8	8	8	7	9	10	10
13	9	5	8	7	8	9	9
14	8	6	б	8	9	10	10
15	7	2	1	0	10	10	10
16	8	б	8	7	10	10	10
Total	130	76	118	111	132	148	130

Table 54: ANOVA for significant different between courses

S.O.V.	d. f.	SS	MS	F	F-Table
Tret.	б	196.6	32.76	5.59	2.17
Error	105	616.15	5.86		

Table 55 : Result of Dankn test

The order of the best material	The result
English	SIg.*
Computers	SIg.
Calculus+rights	SIg.
Linear algebra I	1
General physics	/
Foundation of mathematics	/

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

2-1-3-3 Second stage Table 56: significant different between courses

	~-8		between e			
The order	Advanced	Linear	Probability	Differential	computers	Democratic
	calculus	algebra II	and	equations		freedom
			statistics			
1	7	2	2	9	7	8
2 3	9	9	4	9	9	10
3	9	9	5	7	6	10
4	б	8	5	9	10	10
5	6	7	3	9	10	10
б	5 3	9	5	9	10	10
7	3	8	5	10	3	10
8	9 7	3	5	9	9	10
9	7	6	10	10	10	9
10	7	б	2	5	8	8
11	5 5	5	0	6	7	10
12		6	4	8	5	6
13	8	7	4	8	9	7
14	8	3	6	5	9	4
15	10	8	9	10	10	9
16	5	6	5	7	8	9
17	5	6	4	7	7	9
18	5	6	4	7	7	8
19	8	3	3	8	9	0
20	8	6	5	9	8	8
21	б	7	0	7	5	7
22	5	6	0	7	5	7
23	5	б	2	9	8	7
Total	151	142	92	184	169	186

Table 57: ANOVA for significant different between courses

S.O.V.	d. f.	SS	MS	F	F-Table
Tret.	5	267.22	53.444	10.12	2.21
Error	132	697.98	5.28		

Table 58:Result of Dankn test.

The order of the best material	The result
Democratic and freedom	Sig. **
Differential equations	Sig.*
Computers	Sig.*
Advanced calculus	Sig.
Linear algebra II	Sig.
Probability and statistics	/

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

3-1-3-3 Third stage Table **59:** significant different between courses

The order	Mathematical	Numerical	Operation	Theory of	Abstract	Computers
	analysis	analysis	research	diff. eq.	algebra	
1	7	7	б	8	8	9
2	8	8	8	9	10	10
3	8	8	8	8	9	8
4	9	7	7	5	5	10
5	7	9	10	8	5	10
6	6	8	7	4	5	8
7	6	8	8	7	7	9
8	8	2	1	2	10	7
9	9	8	9	5	7	9
10	9	10	б	8	3	10
11	7	10	б	0	8	9
12	8	10	7	5	8	10
13	8	9	7	7	5	10
14	7	9	б	7	0	10
15	5	б	7	5	б	8
16	6	7	б	5	9	9
17	8	9	5	5	5	10
Total	126	135	114	98	110	156

Table 60: ANOVA for significant different between courses

S.O.V.	d. f.	SS	MS	F	F-Table
Tret.	5	124.52	24.9	7.17	2.29
Error	96	333.34	3.47		

Table 61:Result of Dankn test

The order of the best material	The result
Computers	Sig. **
Numerical analysis	Sig.
Mathematical analysis	Sig.
Operation research	1
Abstract algebra	/
Theory of differential equations	1

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

Table 62:	Table 62: significant different between courses									
The order	topology	Complex	Functional	Topological	computers	History and				
		analysis	analysis	entropy	_	philosophy				
1	8	10	7	б	9	9				
2	7	9	7	6	8	9				
3	4	4	4	5	6	8				
4	10	7	5	0	0	10				
5	8	7	7	5	6	10				
6	9	8	9	5	7	10				
7	5	5	6	5	8	10				
8	9	8	7	5	6	10				
9	7	7	8	7	8	9				
10	10	9	9	9	9	10				
11	9	10	8	9	7	10				
12	8	7	6	8	7	9				
13	8	9	6	6	10	6				
14	9	10	7	5	6	5				
15	5	7	2	7	8	9				
16	10	9	7	5	8	10				
17	7	5	6	4	5	8				
Total	133	131	111	97	118	152				

4-1-3-3 fourth stage Table 62: significant different between courses

Table 63: ANOVA of significant different between courses

S.O.V.	d. f.	SS	MS	F	F-Table
Tret.	5	109.35	21.87	3.899	2.29
Error	96	304.94	3.17		

Table 64:Result of Dankn test

The order of the best material	The result
History and philosophy of math.	Sig.**
Topology	Sig.
Complex analysis	Sig.
Computers	1
Functional analysis	1
Topological entropy	1

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

2-3-3 Factorial Experiment

1-2-3-3 first stage

Table 65: significant different between courses

Calc	culus	Foundation of math.		Linear a	algebra I	Computers		
Persona lity	Scientifi Cally	Persona lity	Scientifi cally	Persona lity	Scientifi cally	Persona lity	Scientifi cally	
10	10	7	б	9	8	9	7	
10	10	9	9	8	7	2	10	
10	10	10	8	10	10	9	7	
10	9	9	5	9	8	7	8	
10	10	7	б	10	10	5	6	
10	10	10	б	10	9	10	9	
10	10	8	б	10	9	9	8	
10	10	7	5	10	10	8	9	
10	10	9	9	10	10	10	10	
8	10	0	0	10	10	б	6	
10	10	10	10	10	10	7	10	
9	9	8	8	9	8	7	8	
10	7	10	3	5	0	3	3	
10	9	6	5	10	9	10	8	
8	10	5	10	10	10	10	10	
10	9	7	8	8	9	10	8	

Table 66: ANOVA of significant different between courses

S.O.V.	d. f.	SS	MS	F	F-Table
Rep.	15	169.38	11.29	7.14	1.75
A	3	125.31	41.77	26.4	2.68
В	1	5.28	5.28	3.3	3.92
AB	3	140.13	46.7	29.5	2.68
Error	120	190.78	1.58		

Table 67: Result of LSD test.

The material	scientifically		personality		The mean	
Calculus	9.68		9.:	9.56		.62
Foundation of Math.	7.62		6.5		7	.06
Linear algebra I	9.25		8.56		8.90	
Computers	7.62		7.93		7.77	
The least sig.	0.739					
The mean	8.54		8.	13		
The least sig.	1.4					
best	calculus	linea	r algebra I	foundation	of math	computers

J.Thi-Qar Sci. No. (3)	Vol.1	Janu. /2009
------------------------	-------	-------------

2-2-3-3 second stage Table 68: significant different between courses

Adva calc	anced	Linear a	lgebra II		ility and stics		rential tions	Comp	outers
Persona	Scientifi	Persona	Scientifi	Persona	Scientifi	Persona	Scientifi	Persona	Scientifi
Lity	cally	lity	cally	lity	cally	lity	cally	lity	cally
6	8	8	8	2	7	9	10	8	9
8	9	9	9	4	6	9	8	9	9
5	10	8	7	7	6	8	9	8	10
10	10	9	8	8	6	10	9	9	10
4	7	8	8	б	5	7	9	7	6
10	9	10	9	8	3	10	9	10	9
8	8	4	5	3	5	7	8	9	7
8	7	2	4	3	5	4	3	3	8
5	10	8	8	б	8	7	8	7	9
5	5	7	б	б	7	9	9	10	10
5	4	7	5	6	7	9	9	10	10
8	10	8	7	0	0	10	10	10	10
7	10	7	5	8	9	10	10	8	10
3	10	8	9	9	10	8	10	9	10
8	9	7	7	8	9	10	10	8	10
6	б	7	б	8	5	9	7	9	8
6	9	8	7	7	7	9	9	8	9
6	9	8	7	7	7	9	8	8	9
8	9	2	4	2	4	8	9	9	9
6	10	8	8	7	8	10	10	9	9
6	б	4	7	10	7	9	8	7	7
7	8	4	8	1	3	9	8	8	9
0	0	5	5	0	0	7	б	7	7

Table 69: ANOVA of significant different between courses

S.O.V.	d. f.	SS	MS	F	F-Table
Rep.	22	349.35	15.87	3.59	1.52
A	4	281.94	70.48	15.9	2.37
В	1	15.65	15.65	3.54	3.84
AB	4	319.02	79.75	18.04	2.37
Error	220	974.29	4.42		

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

The material	scientifically		Per	rsonality		The mean		
Advanced calculus	6.30		7.95			7.12		
Linear algebra II	6.78			6.82			6.8	
Probability and	5.47			5.82			5.64	
statistics	8.56			8.52			8.54	
Differential equations	8.26		8.86			8.56		
computers								
The least sig.	0.934		-					
The mean	7.07			7.59				
The least sig.	1.75							
Best	computers	Differe	ential	advanced		linear	probability	
		equatio	ons	calculus	al	gebra II	and	
							statistics	

Table 70:Result of LSD test

3-2-3-3 Third stage Table 71:_Significant different between courses

Matherr analy		Numerica	il analysis	Operation	research		ory of quations	Abstra	ct algebra	CO1	computers	
Persona	Scient	Persona	Scientifi	Persona	Scienti	Perso	Scientifi	Perso	Scientifi	Perso	Scientifi	
lity	ifi	lity	cally	lity	fi	na	cally	na	cally	na	cally	
	cally				cally	lity		Lity		lity		
10	8	10	10	10	7	7	8	10	10	10	9	
6	9	4	10	3	5	2	10	5	10	7	5	
7	8	10	7	7	б	8	7	10	10	10	10	
10	10	10	8	10	9	10	10	10	10	10	9	
10	10	10	10	10	6	5	4	10	10	10	10	
9	8	9	9	8	9	7	10	10	10	9	8	
10	7	5	10	10	9	10	6	10	6	10	10	
10	9	5	9	6	6	7	8	8	6	9	9	
6	6	8	8	8	9	8	7	7	8	10	10	
10	10	10	10	10	10	10	7	10	10	10	10	
10	10	10	7	10	6	10	2	10	9	10	7	
10	10	10	10	10	10	4	9	10	10	10	10	
9	9	10	10	0	5	10	5	10	10	9	9	
10	10	8	10	0	0	0	1	10	10	2	3	
8	6	8	7	7	6	2	4	9	7	8	6	
9	8	9	9	8	9	9	9	9	9	10	10	
7	7	7	7	6	7	10	10	10	10	9	9	

J.Thi-Qar Sci.	No. (3)	Vol.1	Janu. /2009
----------------	----------------	-------	-------------

S.O.V.	d.f.	SS	MS	F	F-Table
Rep.	16	280.29	17.5	5.9	1.57
A	5	153.218	30.64	10.35	2.21
В	1	1.257	1.257	0.4	3.84
AB	5	159.394	31.87	10.76	2.21
Error	192	569.47	2.96		

Table 72: ANOVA for significant different between courses

Table 73:Result of LSD test

The material	scientific	cally	personal	ity	The	mean	
Mathematical	8.88		8.52		8	.7	
analysis	8.41		8.88		8.64		
Numerical	7.23		7		7.	11	
analysis	7		б.88		б.	94	
Operation	9.29		9.11		9	.2	
research	9		9.47		9.	23	
Theory of							
diff.equations							
Abstract algebra							
Computers							
The least sig.	0.84						
The mean	8.30		8.31				
The least sig.	1.51						
Best	computers	abstraci algebra		numerical analysis	operation research	theory of differential equations	

4-2-3-3 fourth stage Table 74: significant different between courses

topo	logy	Complex a	nalysis		unctional Topological computers H analysis entropy pl		History and philosophy of math.				
Persona	Scientifi	Persona	Scientifi	Persona	Scientifi	Perso	Scientifi	Persona	Scientifi	Perso	Scient
lity	cally	Lity	cally	lity	cally	na	cally	lity	cally	na	ifi
						lity				lity	cally
10	10	10	10	10	10	10	9	10	10	10	10
9	9	10	9	8	8	6	7	8	9	10	10
3	7	7	7	7	7	5	5	7	7	8	8
10	10	7	7	5	4	3	3	4	5	10	10
10	10	10	9	10	9	5	6	7	6	10	10
10	10	9	10	10	7	6	7	10	10	10	10
10	10	8	7	8	б	10	9	10	7	8	10
10	10	10	10	9	7	5	5	5	6	10	10
7	9	9	8	8	8	6	6	8	8	10	10
10	10	10	10	10	10	10	10	10	9	10	10
10	10	10	9	10	9	10	10	10	8	10	8
9	8	7	7	7	7	8	8	б	8	10	10
8	10	10	10	8	8	8	8	7	8	6	8
10	10	10	8	10	7	10	7	10	7	10	10
9	9	9	10	10	8	9	10	9	6	10	10
10	10	10	10	9	10	8	5	8	8	10	10
8	7	6	5	6	5	7	6	6	5	8	8

Table 75: ANOVA for significant different between courses

S.O.V.	d. f.	SS	MS	F	F-Table
Rep.	16	231.08	14.4	19.2	1.57
A	5	127.47	25.49	33.9	2.21
В	1	3.32	3.32	4.4	3.84
AB	5	138.94	27.78	37.04	2.21
Error	192	144.61	.75		

Table 76: Result of LSD test

The material	scientifica	lly		personali	ty		The m	ean
Topology	9		9.35			9.17		
Complex analysis	8.94			8.58		8.76		
Functional analysis	8.52			7.64			8.03	8
Topological	7.41			7.11			7.21	7
entropy	7.94			7.47			7.7	,
Computers	9.41			9.5			9.40	6
History and								
philosophy of math.								
The least sig.	0.42							
The mean	8.536			8.275				
The least sig.	0.765				I			
Best	History and philosophy of math	topol	ogy	complex analysis	function analysi		computers	topological entropy

References

- 1- Alkutubi,H.S.statistical analysis of cancer tumours in Iraq,Thesis,university of Tikrit,2000.
- 2- Alkutubi,H.S..Evaluation of cancer disease for the period (1995-2005) in Tikrit teaching hospital.,Tikrit journal of pharmaceutical science,vol.1,no.2,2005.
- 3- Bland,Martin.An introduction to medical statistics,third edition.,Oxford university press ,Inc.,New York,2000.
- 4- Palma wilfredo..Long-memory time series, theory and method., A John wily and Sons, Inc. puplication, 2007.
- الراوي، خاشع محمود المدخل الى الاحصاء ،الموصل ، جامعة الموصل، وزارة التعليم العالى والبحث العلمي، ١٩٨٤
- ٢- الساهوكي ، مدحت صالح وو هيب، كريمة محمد، تطبيقات في تصميم وتحليل التجارب ، بغداد ، جامعة بغداد ، وز ارة التعليم العالي والبحث العلمي ، ١٩٩٠,
- ٧ القرشي، احسان كاظم، الطرائق المعلمية والطرائق الامعلمية في الاختبارات الاحصائية، مطبعة الديواني، بغداد،
 ٢٠٠٧
 - ٨- عوض، عدنان محمد واخرون ، مقدمة في الاحصاء ، الاردن ، مركز الكتب الاردني ، ٢٠٠٢.

حول مستويات استيعاب طلبة قسم الرياضيات لموادهم الدراسية هديل سليم الكتبي انعام رزاق قسم الرياضيات- كلية العلوم- جامعة الكوفه

الملخص

في هذا البحث تم تقديم الفروق المعنوية بين مستويات استيعاب طلبة قسم الرياضيات لموادهم الدراسية المختلفة ولكل مرحلة من مراحل قسم الرياضيات بكلية العلوم جامعة الكوفة. فضلا عن إيجاد تأثير المتغيرات الأربعة (المستوى العلمي للتدريس ،شخصيته،قدرته على التقييم ،وقدرته على التوصيل) في تحسين مستوى الاستيعاب . لتحقيق هدف البحث تم استخدام طرق إحصائية مناسبة ،تصميم تجارب،ارتباط وانحدار .