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Abstract—We investigate the dispersion relation of guided 

waves in a three-layered slab waveguide, with one layer filled 

with chiral metamaterial and the other two filled with normal 

materials. This waveguide model contains an interface between 

adjacent layers. Graphene was used for this purpose due to its 

excellent optical properties. The interface thickness is 1.02nm , 

where three monolayer graphene was used. Propagation 

equations and special cases for this type of structure and 

graphene properties were obtained. Such phenomena have also 

been given physical explanations. Our theoretical work has 

been validated by simulation findings. These chiral structures 

have potential uses in millimeter-wave and microwave-

integrated circuits. 

Keywords—Chiral metamaterial, Slab waveguide, 

Graphene.  

I. INTRODUCTION 

    The study of electromagnetic wave properties of 

dielectric materials is an essential element in which 

electromagnetic waves are used to transport energy from 

one place to another. Electromagnetic waveguides are 

specifically engineered electromagnetic structures or media 

that facilitate the effective flow of energy or information in 

a certain direction. The waveguide is a structure that uses 

total internal reflection to both confine and direct the wave 

beam [1] Because of the well-known phenomenon of optical 

activity chiral media have been known for a very long time 

in the optical region. Two intrinsic eigenwaves with left- 

and right-handed circular polarizations, as well as different 

phase velocities and refraction indices, are the defining 

characteristics of these media [2]. Since chirality (coupling) 

parameters can be appropriately controlled to produce 

negative reflection and/or refraction, chiral metamaterials 

have also attracted interest [3]. In this paper, we have 

analyzed the dispersion relation of even and odd modes for 

both right-hand circularly polarized waves (RCP) and left-

hand circularly polarized waves (LCP) and graphene 

properties in a three-layered waveguide, where cladding 

layers are covered by the normal materials and the central 

layer are occupied by chiral left-handed material with 

graphene interfaces. 

II.WAVE EQUATION IN SLAB WAVEGUIDE 

  In this work, there are two types of materials: the non-

chiral type and the chiral type. In the following subsections, 

we will try to clarify the wave equation in both cases. 

A. Non-Chiral Media 

        The expression for the two constitutive relations that 

characterize the medium's reaction to applied fields is 

   ,               (1)D E B H    

where , ,E H D , and B are the electric field, magnetic 

field, electric displacement, and magnetic flux density, 

respectively. Here, the permittivity  and permeability  are 

scalars for isotropic medium. Using some of the facts, the 

wave equation for the longitudinal component of the electric 

field will be [4].  
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where 0i i ik k   , 0 effk n  is the propagation 

constant along the longitudinal direction, 0k  is the free 

space wave number, and effn is the modal effective 

refractive index. The wave equation for the longitudinal 

component of the magnetic field will be [5] 
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It should be noted that the magnetic and electric fields' 

longitudinal components are independent.  

 

B. Chiral Media 

   The electric and magnetic fields in chiral media are 

connected as [6]. 
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where K  represents the chirality factor and ˆ ˆzz  is a dyadic 

tensor. Note that the second term in Eqs. (4) represents the 

coupling due to chirality. We shall be content to mention the 

coupled wave equations to the electric and magnetic fields 

here as deriving the wave equation here necessitates 

working on vectorial Maxwell's equations, which is time-

consuming and complex and takes us outside the topic of the 

research [7]. 
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where 
2 2 2q w     . Note that, Eqs.(5) shows that the 

two longitudinal fields are coupled by the chirality. 

Consequently, the fields are typically hybrid rather than TE 

or TM modes as in the case of zero chirality, where 0K  .  

The expression for electromagnetic fields in a chiral 

medium is [8]:  

                                      (6a)

                                   (6b)
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The relationship between the magnetic and electric fields is 

established by 

                                  (7)z zH j E  
 

where     is the intrinsic impedance of the medium. 

 

III. MODAL DESCRIPTION 

        The structure shown in Fig.1 consists of the chiral-

guided film surrounded by a normal material with 

parameters 1  and 1 . The surrounding medium is assumed 

to exhibit no chirality. The central layer (Region 2) is 

located in the region at 2 2d x d    with isotropic 

chiral negative index metamaterial that has a permittivity 2

, permeability 2 , chirality parameter 2K  and thickness 

d , while the cover layer (Region 1) is located at 2x d  

and the substrate layer (Region 3) is located in the region 

2x d  .  

 
 

 

IV. THEORETICAL INVESTIGATION 

          Assuming that the electromagnetic wave propagates 

in a z-direction with harmonic time fields, the fields can 

take the form 
( )i z wtE e 




. Attention that, in our 

derivations, the method of the paper [9] will be used, and 

the necessary adjustments will be made to include the 

changes adopted in this work. The reason for using this 

method is to separate the results based on odd and even 

including RCP and LCP.  

  

A. Dispersion Relation of Even Modes  

       In this model, the chiral metamaterial is at the core 

region only. For even modes, the solutions of Eqs.(2) at 

non-chiral layers and (5a) at the chiral layer (where Eqs.(6a) 

will use to solve (5a)) are 
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where / 2h d  and 
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The parameters , , ,A B C and D represent the amplitudes 

of the waves in the different layers. Using Eqs.(6b) and (7) 

to find 2zH  and Eq.(3) to find 1zH and 3zH , the 

longitudinal magnetic fields in the three layers will be 
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The longitudinal and transverse components of magnetic 

and electric fields ,y yE H  are connected [9] 
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where the prime refers to the derivation with respect to x . 

Using Eqs.(10) and (11a), yields 
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Using Eq.(10) and (11b), yields  
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where 1 2,   are the intrinsic impedance of the cladding 

and central regions, respectively. The following conditions 

apply to the waves that are transferred over the interfaces 

[10] 

, (14a)

, (14b)
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Applying these boundary conditions at  the x h   on the 

indicated fields, we get 
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Here, to facilitate the solutions, we united all the functions 

to cos function using the assumptions 

2 2sin cosq h X q h   and 2 2sin cosq h Y q h  . The 

determinant of coefficients in Eqs.(15) may be written as 
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A non-trivial solution of the system in Eq.(15) can exist 

only if the determinant of coefficients in Eq.(16) vanishes. 

Any known mathematical method can be used to determine 

this determinant, which will lead to the simplified formula 

of the dispersion relation 
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Substituting the definitions of 1 2,m m  and carrying many 

simplifications, Eq.(17) may be rewritten as 
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The dispersion relation of the even modes (RCP and LCP) 

in a symmetric slab waveguide with a chiral metamaterial 

core is represented by above equation. 

 

B. Dispersion Relation of Odd Modes  

        The longitudinal field solutions in the three-layers for 

odd modes are given by 
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and 
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The coefficients equations system will be operated in a 

similar way as in the even modes 
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Here, we united all the functions to sin  function using the 

assumptions
 2 2cos sinq h X q h   and

2 2cos sinq h Y q h  . The determinant of coefficients in 

Eqs.(21) must be zero. That is, 
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By applying any mathematical method to calculate the 

determinant and simplifying the resultant, we obtain the 

simplified formula  
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where 2cotX q h , 2cotY q h . Note that, Eqs.(18) 

and (23) are the same except for the difference in the value 

of  , which represent the dispersion relations of even and 

odd modes, respectively. Moreover, the signs ( , )   at the 

sub-index refer to the RCP and LCP, respectively. 

  

C. Generalized Dispersion Relation 

           For even modes, the RCP and LCP can be found in 

Eq.(18), where the RCP mode is found by taking 0X    
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and 0Y  , while the LCP is found by setting 0X    and 

0Y  . Also, the odd modes can be found in Eq.(23), where 

the RCP and LCP can be found by taking 0X    and 

0Y   for the RCP, while the LCP is found by setting 

0X   and 0Y  . In general, from the above 

assumptions, we get four equations. Two equations for the 

even modes are for the cases RCP and LCP and the same for 

the odd modes. All these equations can be combined in a 

generalized formula for slab waveguide has a chiral 

metamaterial layer in the core and a sheet of graphene on 

the interfaces as 
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where m is the mode order of the hybrid mH mode. Here it 

must be emphasized that, the symbol ( , )     refer to the 

odd and even modes. Without chirality and graphene 

interfaces, we have 
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such that the dispersion relation will be 
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The last equation is well known in scientific research [4,5],  

producing the TM mode for a three-layer slab metamaterial 

waveguide. 

For nihility chiral metamaterial media and no 

graphene interfaces, where 2 20 , 0   , the parameters 

will be 

1 2 2 2 2 1 0 1 2 0 21,  ,  , .r r q q q k k n k k K          

Such that the dispersion relation takes the formula  
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Note that, here, the signs ( , )   represent the RCP and LCP 

modes, respectively. 

 

V. GRAPHENE PROPERTIES  

          Because of its exceptional optical characteristics, high 

carrier mobility, and flexibility, graphene (a monolayer of 

carbon atoms arranged in a honeycomb lattice) is one of the 

best materials for optoelectronic devices and 

nanoelectronics. In particular, graphene's surface 

conductivity may be constantly adjusted in the terahertz 

band by applying the chemical potential through an external 

gate voltage [11]. Graphene's relative permittivity is 
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in which 0.34nm   is graphene sheet thickness. The 

graphene complex refractive index can be expressed as 

g gn  . The thickness and conductivity of a five-layer 

graphene can be computed by considering 5  and 

5  . With a thickness significantly less than the 

excitation wavelength, the bulk conductivity and surface 

conductivity are correlated by V   [12,13]. The Kubo 

formula can be used to determine graphene's surface 

conductivity  
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where e is the charge of an electron, FE is the Fermi 

energy (or chemical potential) of graphene, which can be 

controlled by applying bias voltage or chemical doping, 

1 2   is the momentum relaxation time with  is the 

scattering rate, T is the Kelvin temperature, Bk is 

Boltzmann’s constant and  is the reduced Plank’s constant 

[11]. Electromagnetic waves bonded to the metal-dielectric 

interface are called surface plasmons. When the real 

component of the dielectric constant is negative, and the 

imaginary part is very small compared to the negative real 

part, a material is said to be plasmonic in order to achieve 

minimal losses. This demonstrates how the chemical 

potential and input excitation frequencies of graphene have 

a significant influence on its plasmonic behavior. 

Understanding the propagating surface plasmon (SPP) and 

localized surface plasmon (LSP) on graphene requires an 

understanding of the interaction of light with the surface 

[14,15]. 

 
VI. RESULTS AND DISCUSSION 

         In this section, we will take a three-layer graphene 

interface with a thickness 1.02nm  and 61 10 /Fv m s   is 

the Fermi velocity and 4 28 10 /m cm sV    is the carrier 

mobility parameter and 300T K  to simulate the 

properties of graphene material. Other parameters will be 

imposed during the simulation.  

             
     Fig.2 shows real and imaginary parts of the refractive 

index of graphene as a function of wavelength for the 

number of graphene layers at the chemical potential 

0.5FE eV . This is in order to clarify the effect of 

increasing wavelength on the graphene properties when a 

certain chemical potential is used. The real part of the 

refractive index has a nonlinear increase that is inversely 

proportional to the number of graphene layers, and then it 

drops to zero. The lines farther from the left turn to be closer 
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after passing point (1,1.5). The imaginary part of the 

refractive index shows a nonlinear increase within a range

(0 1.3) m   , then a decrease starting at
 1.3 m  . 

Finally, the large increase in the imaginary part is at a 

wavelength greater than
 1.5 m . 

 
        Fig.3 represents real and imaginary parts of the 

refractive index as a function of the number of graphene 

layers for different wavelengths at the chemical potential
 

0.5FE eV . Note a clear decrease for the real and 

imaginary parts of the refractive index with an increase in 

the number of layers despite the different wavelengths. In 

general, for a single layer, the real part takes the highest 

value compared to the imaginary part of the refractive index. 

It is worth mentioning that the number of layers refers to the 

thickness; therefore, controlling of the number of layers 

(decrease or increase) provides flexibility to control the 

thickness of the graphene interface. As a result, it can be 

said that the refractive index for multilayered graphene 

decreases with increased thickness.  

 

 
       Figs.4 and 5 illustrate dispersion relations for odd and 

even modes, respectively. The green color refers to the case 

of 0   while the red color represents the 0   case. The 

parameters used to get these figures are: 

1 2 1 1 2 20, 0.4, 1, 3.5K K            and 

61 10FE eV  . Here, the thickness of the guided layer is

1d m . We note that modes in case 0   appears first 

and then comes after modes in the case of 0  . As a 

result, we can get the same value for effective refractive 

index effn within the less normalized frequency k d in the 

presence of graphene interfaces case. Compared with the 

case RCP, the effective refractive index effn  in the LCP 

case has great values, also LCP modes appear within the 

lower normalized frequency range. All modes begin at 

1effn   with a backward propagation and turn into a 

forward propagation when increasing normalized frequency. 

The propagation characteristics of light in the waveguide 

depend on the frequency of the light. In metamaterial 

waveguide with graphene, there can be a critical k d value. 

Below this value, the light propagates backward. However, 

as k d  increases beyond this critical point, the light starts 

forward propagation. Backward propagation is due to the 

presence of metamaterials, but this change in behavior 

occurs due to the influence of graphene with increasing 

normalized frequency. 

 

 
      Figs.6 and 7 show the dispersion relations for guiding 

modes at different values for the dielectric constants in the 

core region in waveguide structure. The green lines refer to 

the odd modes. While the red lines represent the even 

modes. The thickness of the central layer in the waveguide 

is 4d m either the other parameters are: 

1 2 1 10, 0.2, 1K K       and 1FE eV . Here, the 

figures are in the case of  the use of graphene interfaces, 

which means 0  . The dielectric constants are 

2 2 2.5     in Fig.6 and 2 2 5.5     in Fig.7. Note 

from Fig.6, the modes RCP appears within the range of the 

effective refractive index 2.5effn   and 13k d   while 

modes LCP within 2.8effn   and 11k d  . For Fig.7, RCP 

modes shown within 5.5effn   and 6k d   while LCP 
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modes are within 6effn   and 5k d  . As a result, we can 

say that increasing the values of dielectric constants leads to 

a large effective refractive index effn within the less 

normalized frequency. It is worth mentioning that even 

modes do not provide any support for the zero mode for any 

parameters used, unlike odd modes, as shown in the figures. 

This change can vary depending on the specific waveguide 

design and material properties. The reason for this 

disappearance is complex and has to do with the interaction 

between the light wave, the chiral metamaterial properties, 

and the electrical properties of graphene. The graphene 

modifies the way the light interacts with the waveguide, 

leading to the absence of the fundamental mode.  

 

VII. CONCLUSIONS 

          In conclusion, the results showed that graphene 

properties affect the propagation properties of light, which 

in turn causes the disappearance of the fundamental odd 

mode. The reason for this disappearance is the interaction 

between the light wave, the chiral metamaterial properties, 

and the electrical properties of graphene. The even modes 

do not provide any support for the fundamental mode for 

any parameters used. Increasing the dielectric constant 

values leads to a large effective refractive index effn with 

less normalized frequency. We can get the same value for 

effective refractive index effn within less normalized 

frequency k d in the presence of graphene interfaces case. 

All modes begin with a backward propagation and turn into 

a forward propagation when increasing normalized 

frequency. Backward propagation is due to the presence of 

metamaterials, but this change in behavior occurs due to the 

influence of graphene. Moreover, it can be said that the 

refractive index for multilayered graphene decreases with 

increased thickness.  
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