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Abstract— A decorated ferrimagnetic mixed triangular 

system was studied using the molecular mean-field 

approximation. The outcomes of the investigation were 

examined using the Blume-Capel Ising model. The study paper 

investigates the influence of crystal and external magnetic 

fields on ferrimagnetic devices decorated with mixed spin-2 

and spin-7/2 of a triangular lattice. It is noteworthy that spin-2 

ions are located at the nodal points, whereas six additional 

spin-7/2 ions surround the proposed lattice. Altering the 

exchange interactions through the specific crystal and external 

magnetic fields induces superparamagnetic behaviours. New 

characteristics reveal that mixed spin triangular decorated 

ferrimagnets exhibit superparamagnetic behaviour at DA∕

|J2|=-2.5, with J1 = -0.5 and J2 = -1.0 in the range (15 ≤ KBT 

/|J2| ≤ 18). It is important to note that the total magnetization 

changes with the external magnetic field and affects the 

superparamagnetism phenomenon of a decorated mixed spin 

ferrimagnet when DA/|J2| = 8, and DB/|J2|=-11, J1 = -0.5 and J2 = 

1, for KBT/|J2| = 2, 2.5, 3, 3.5, and 4 Ko respectively. 

Keywords—Decorated ferrimagnets, triangular lattice, 

Nodal and decorating anisotropies, superparamagnetic 

behaviour.   

I.INTRODUCTION  

Recently, ferrimagnetic materials have been the most 

magnetically important materials in various applications. 

The Ising model with mixed magnetic spins has become 

increasingly significant in recent years. The Ising models 

and their modifications have been widely regarded as crucial 

topics in statistical mechanics. They are characterized by the 

magnetization's instability caused by thermal agitation, 

leading to superparamagnetism [1,2]. Researchers have 

investigated these models' magnetic properties using 

methods such as mean-field theory, practical field theory, 

Monte Carlo simulation, etc. [3 V. Stubna and M. Jascur [4] 

used a generalized decoration iteration transformation to 

investigate a mixed spin-1/2 and spin-3/2 Ising model on a 

decorated square lattice the ground state and finite 

temperature phase boundaries are determined by finding a 

phases that correspond to the system's minimal internal or 

free energy. The researchers employed the mean-field 

approximation method to analyze the properties. M. 

Kerouac and Boughrara [5] Monte Carlo simulations 

examined the critical behavior and magnetic properties of a 

decorated Ising film on a cubic lattice framework. The 

system recognized double reentrants and one or two 

compensating points. R. Masrur et al. [6]. Conducted Monte 

Carlo simulations to model the magnetic characteristics of 

Ising spins with values of 5/2 and 3/2 on square and 

triangular lattices with additional decorations. The 

researchers determined the critical temperature at which the 

two-dimensional square and triangular lattices transformed. 

The authors investigated magnetization using exchange 

connections and crystal fields. Two-dimensional decorated 

square and triangle lattices monitored saturation 

magnetization and magnetic coercive field. M. Karmoua and 

N. De La Espriella [7] investigated a square lattice 

ferrimagnetic Ising system's critical point, first-order phase 

transition, and spin compensation behaviour. The system 

consisted of alternating spins of S-3/2 and S-5/2. The study 

employed Monte Carlo simulations and mean field theory. 

A twofold first-order phase transition was found to be 

temperature-dependent. Hadey K. Mohamad [8] used mean 

field theory to study a two-sublattice-adorned Blume Capel 

and found remarkable long-range order behaviour by 

altering magnetocrystalline anisotropies at both sites. Using 

a straightforward hydrothermal method, they manufactured 

superparamagnetic nanocomposites of MoS2 nanosheets 

coated with magnetic Fe3O4 nanoparticles [10]. A. Jabar and 

R. Masrour [9] studied the phase diagrams of Ising models 

with spin-5/2 and spin-2 on a decorated square lattice. The 

study's main aim was to assess the magnetic characteristics 

of the ground state. The authors emphasized the significance 

of superparamagnetic systems. This research will study a 

Blume-Capel Ising model with mixed-spin ferrimagnetic 

properties using a developed mean field approximation 

(MMFA). We analyze the decorated triangular lattice 

containing N atoms. The lattices represent a mixed magnetic 

system comprising two sublattices, A and B, with magnetic 

spins SA = 2 and SB = 7/2, respectively. The analysis of the 

occurrence of superparamagnetism in the proposed system 

is illustrated in Fig.1. We investigate the correlation 

between the total magnetisation and the atoms' external and 

crystal magnetic fields to achieve this. The work is 

organized as follows: in section 2, we offer the basic 

framework of the relevant theory, giving the Hamiltonian 

operator of a decorated triangular lattice. In Section 3, we 

present the results and discussions. Finally, the conclusion is 

presented in Section 4. 
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II. FORMALISM  

The proposed ferrimagnetic system consists of a 

decorated triangular lattice consisting of a mixture of two 

sublattices, A and B, with spin values of (2,7/2). As depicted 

in Fig. (1), the Hamiltonian expresses the interactions 

between nearest neighbours, an external magnetic field, and 

the crystal field in the two-dimensional decorated triangular 

lattice. 
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 Where H is a Hamiltonian measured by a Joule unit. J1 is 

the nearest neighbour exchange parameter between 

magnetic atoms across the nodal and decorating ones. J2 is 

the exchange interaction of the decorating atoms.   And are 

the spins of atoms at sites i and j, respectively. DA and DB 

are single-ion anisotropies on A and B sites in Joule. 

Whereas H is the magnetic field in (Amp/m) unit. Spin Si 

inhabited sublattice A with values of (±2, ±1,0), while Sj 

occupied the sublattice in the spin, which have the values 

of (±7/2, ± 5/2, ±3/2, ±1/2) are present in both networks.        

The Hamiltonian expresses Blume-Capel Ising decorated 

lattices in the absence of an external magnetic field [11], 
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Using the Maxwell-Boltzmann distribution. 
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and substituting Eq. (3) into (4), yields 
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Where Si takes values  2,  1, 0 and assuming    J1= t1, 

one obtains 
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By using the identities e
x
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-x
  2sinhx and e
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2coshx, Eq. (6) has the formula 
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And substituting Eq. (8) into (9), it gives, 
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where Sj takes values  7/2,  5/2, 3/2, 1/2 and 

assuming     J1= t1 and    J2   t2, the Eq (10) is written as 

 

   
 

 
 

 
       

 
       

  
      

 

 
 

 
 
        

 
       

  
     

 
 
       

 
       

  
       

  
 
       

 
       

  
     

  

            
 

 
  

 
          

 
        

  
       

 

 
  

  
 
        

 
        

  
       

  
 
          

 
        

  
       

 
 
        

 
        

  
       

    

            
 
 

 
  

 
       

 
       

 
      

 

 
 

  
 
        

 
       

 
       

 
 
       

 
       

 
       

  
 
       

 
       

 
       

   

           
 
 

 
 

 
       

 
       

 
      

 

 
  

  
 
       

 
       

 
     

  
 
 
      

 
 
       

 
 
     

  
 
 
      

 
 
      

 
 
    

         (11) 

Hence, Eq. (11) becomes 
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Fig. (1): Schematic representation of two-dimensionally ornamented 

triangular lattices. The red circles (A) indicate atoms with a spin of SA=2, 

whereas the black circles (B) represent decorating atoms with a spin of 

SB=7/2. 

According to Equation (2), the system can achieve the most 

precise estimation of the current model by using a specified 

Hamiltonian. We employ a variational technique that 

calculates free energy based on the Bogoliubov inequality. 

By utilizing this approach, we can acquire the most precise 

estimation of the present model based on a particular 

Hamiltonian [12]. 
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Where G is the free energy of H given by (Eq 2), G0 is the 

free energy of a trial Hamiltonian H
0

 depending on 

variational parameters, and ⟨ ⟩  denotes a thermal average 

over the ensemble defined by H
0

. In this work, we consider 

one of the simplest possible choices of H
0

, namely,  
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Where   
  takes the values of spins for nodal atoms and   

  

with spin of atomic decorating. Whereas λ1, λ2, DA and DB 

are the variational parameters related to the different spins 

and the anisotropies of the two sublattices proposed (i.e., the 

nodal and decorating anisotropies), respectively. 

Researchers employ the partition function to articulate the 

connections between thermal properties, such as free energy 

and magnetization. The experimental Hamiltonian 

corresponds to the partition function [11], which is 
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Now, let us substitute Eq. (14) into Eq. (15) to obtain the 

partition function for the proposed model. 
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It is possible to calculate the free energy by using the 

following Equation: 
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            (          (    )          (   )   )                                                                                       

            

        (  
  

 
       (

 

 
   )    

  

 
       (

 

 
   )  

                 
 

 
       (

 

 
   )   

 

 
       (

 

 
   ))                

(19)                                              

 Equation (13) is used to ensure precise findings. This 

Equation involves subtracting Eq. (14) from Eq. (2) to 

obtain the average value of the Hamiltonian. 

⟨  -  
 
⟩  ⟨   ∑    

   
    ∑    

   
     ∑  

  
   

  ∑    
  

   ∑    
    ∑    

     ∑    
  

   ∑    
  

⟩   

Where   
 

   
 ; <   

   
          ;  ∑    

   
    

     ;          
    

      
    note that    and    represent the 

magnetization of sublattices A and B, respectively. 
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Now, by substituting equations (19) and (20) into Equation 

(13), we get the free energy of the model in question from 

the formula: 
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To calculate the value of   , we use the following 

relationship: 
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And to calculate the value of   , one has, 
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Now, by substituting equations (22) and (23) into Equation 

(21), we get the free energy of the model as in, 
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Notably, in the case of ferrimagnetic materials, distinct 

indications of sublattice magnetizations are observed, and a 

point of compensation exists where the total longitudinal 

magnetization is precisely zero. The aggregate 

magnetization of the Ising model on a two-dimensional 

decorated triangular lattice (z=6; z is the number of nearest 

neighbours of the sublattice) is [13,14],  
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III. RESULTS AND DISCUSSION 

 

By altering the crystal field parameters, we examined the 

relationship between the temperature variation and the 

sublattice magnetizations of a triangular Blume Capel system 

with a mixture of spin-2 and spin-7/2, as shown in Figs. 2 

and 3. The ornamented ferrimagnetic model, which was 

numerically examined, revealed typical behaviours inside the 

mean field approximation (MFA).  We implement the 

strategy by utilizing the minimizing free energy function 

described in Equation (24).  The primary method entails 

studying the phenomenon of superparamagnetism in a 

decorated ferrimagnetic mixed triangular system. We 

investigated the impact of the recommended alloy's low 

temperature on the curves of magnetization and magnetic 

anisotropies. This study analyzes a particular case within a 

decorated ferrimagnetic mixed spin triangle system's (mA, T) 

and (mB, T) planes. We have examined the impact of altering 

the spin crystal fields DB/|J2| and DA/|J2| on the system, as 

seen in Figs. 2 and 3, respectively. More precisely, when the 

values of decorated atoms DA/|J2|=-0.5, J1=-0.5, and J2=-1 are 

kept constant, the sublattices display different magnetization 

patterns within the range of (-4.5 ≤ DB/|J2| < 2.5), as seen in 

Fig. 2. It is essential to highlight that sublattice 

magnetization undergoes a first-order phase transition, 

achieving zero or a different value [14, 25]. The sublattice 

magnetization can quickly altered that it does go to zero 

when the system transitions between two phases, separating 

the ferrimagnetic or antiferromagnetic phase from the 

paramagnetic phase. According to Figure 3, at a temperature 

of 0 Kelvin, the magnetizations of sublattices mA and mB are 

influenced by the decorated crystal field DA/|J2|, with mA 

starting from minimal values of -2, -1.5, and -1, while mB 

starts from its maximum value of 3.5. The magnetizations 

are highly influenced by the positive and negative values of 

DA/|J2| as the temperature rises. Specifically, when DA/|J2| 

takes on values of 2.5, 1.5, 0.5, -0.5, -1.5, and -2.5, the 

magnetizations consistently approach zero. Given that 

DA/|J2|=-3.5,-4.5, and J1= -0.5, J2=-1, it can be shown that it 

occurs at a temperature where the magnetizations undergo a 

discontinuous change. A first-order transition occurs when 

the magnetization undergoes a sudden change, resulting in 

the emergence of new phases at (-1.5, 0.5) and (-1, 3.5) for 

DB/|J2|=-4.5 and DA/|J2|=-4.5, respectively. Similarly, for 

DA/|J2|=-0.5 and DB/|J2|=0.5, the transition is illustrated in 

Figs. 2 and 3. 
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Fig. 2 The sublattice magnetizations of a decorated ferrimagnetic mixed-
spin triangular system are dependent on the temperature at various values 

of DB/|J2|, with a constant value of DA/|J2|=-0.5 and J1=-0.5 and J2=-1.   

 

 
Fig. 3 Variation of sublattices magnetizations with temperature for a 
decorative ferrimagnetic mixed-spin triangle system with a fixed value of 

DB/|J2|=0.5, J1=-0.5, and J2=-1. 

 

Let us examine Fig. 4, which displays the overall 

magnetization as a function of the absolute temperature. It 

shows us significant results that indicate the occurrence of a 

vital magnetism phenomenon: the compensation 

temperature. When the system is exposed to changes in the 

magnetic anisotropy of the sublattices of atom B while 

keeping the magnetic anisotropy of atom A constant, this 

phenomenon occurs at absolute zero. We use a decorated 

triangular lattice (z = 6), where (DA /|J1| = 1), with, J1 = -1, 

J2 = -0.5, and when increasing temperature and before 

reaching the paramagnetic phase, the magnetic spins are in 

the ferromagnetic state. At values of DB /|J1| =-2, -2.5, -3, 

with a fixed value of (DA /|J1| = 1), the system has one 

compensation temperature for each value. As the 

temperature affecting the system increases, it becomes in the 

paramagnetic phase. The material does not undergo the 

compensation phenomenon at (DB /|J1| = -0.5, -1, -1.5). It is 

worth noting that these results confirm that the anisotropy of 

crystalline magnetism plays an essential role in limiting the 

compensation phenomenon and determining the location of 

the compensation temperatures. We differ in this 

interpretation with the results of research [19], which 

confirm that anisotropy exclusively affects the position of 

the compensation temperature. At the same time, we agree 

with the research results [20] that crystalline anisotropy 

affects the results and appearance of the compensation 

temperatures; moreover, the results we obtained are 

distinctive and encouraging and agree with the researchers' 

results. [21, 22], respectively. The phenomenon of 

compensation occurs due to entropy, which refers to the 

measure of irregularity in the magnetic lattice, as it is 

observed that the colonies of magnetic spins align with each 

other in the crystal lattice for the magnetic spins mA, and to 

an extent more significant than the alignment of the 

magnetic spins of the sublattices of atoms B, when the 

temperature increases, affecting the system as a whole. By 

changing the magnetic anisotropies alike, the opposite 

occurs until at a specific value of the magnetic contrasts, it 

becomes mA=-mB, and the total spin magnetic system under 

study is zero, but it is in the ferromagnetic phase. At this 

temperature, the phenomenon of compensation occurs. As 

the temperature increases, the system enters the 

paramagnetic phase and eventually loses magnetism 

completely. Figure 5 illustrates a single compensation 

temperature for various DA/|J1| values while keeping DB/|J1| 

constant. This observation aligns with the Neel hypothesis, 

categorizing it as an N-type behaviour [20]. On the other 

hand, the magnetic characteristics of the suggested system 

have been investigated for various values of DA/|J1|, with a 

fixed value of DB/|J1|=-3. Nevertheless, the magnetization 

curves steadily decline, distinguishing the ferrimagnetic 

phase from the paramagnetic phase. The occurrence is 

called a second-order phase transition or the Curie 

temperature [13,24, 25].  

 

 
Fig.4 The temperature effects on the total magnetizations M of an 
ornamented ferrimagnetic mixed spin triangular system at various DB/|J1| 

values, with DA/|J1| = 1 and J1 = -1 and J2 = -0.5. 
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Fig. 5 The total magnetizations M of a decorated ferrimagnetic mixed spin 

triangular system depend on the temperature at various DA/|J1| values, with 
DB/|J1| holding constant at -3, J1 = -1, and J2 = -0.5. 

 

Now, let us examine Fig (6), which displays the 

overall magnetization as a function of the absolute 

temperature and presents necessary behaviour experienced 

by the magnetic system under study when an external 

magnetic field is applied with a range of (0 ≤ H /|J2| ≤ 0.5) 

when (DA /|J1| = 0.5) and (DB /|J1| = -3.5) with values of J1 = 

-1 and J2 = -0.5 for a decorated triangular lattice. The system 

shows distinct behaviour: one compensation point for each 

H/|J1| value. It is worth noting that these results are 

important and worthy of study because they give the 

impression that the system, under specific conditions of 

crystal anisotropy, possesses alternating magnetism. 

 

 
Fig. 6: The temperature dependences of the total magnetizations M of a 
decorated ferrimagnetic mixed-spin triangular system for various values of 

H/|J2|, with DA/|J2| = 0.5, DB/|J2| = -3.5, and J1 = -1 and J2 = -0.5. 

At a fixed value of DB/|J2| = -0.5, where J1 = −0 5 

and J2 = −  0, Fig. (7) shows how the residual magnetization 

of the total magnetization changes when the magnetic 

anisotropy of a decorated triangular lattice, specifically a 

nodular sublattice, is changed. The overall magnetization 

diminishes with an increase in the absolute value of 

DA/|J2|.Specifically, when DA|J2| > 0, this reduction 

influences the variation of the total magnetization in the 

context of a decorated ferrimagnet under consideration. The 

residual magnetization is the term used to describe the 

condition of a decorated ferrimagnet that is magnetized 

without any external influence, indicating that its 

magnetization is not zero (M ≠ 0) [23, 24] 

 

 
Fig.7. The relationship between the crystal field DA/|J2| and the global 
magnetization M for a decorated ferrimagnetic mixed spin triangular 

system. DB/|J2| = -2.5, with J1 = -0.5 and J2 = -1.0.  

 

Conversely, Fig. 8 demonstrates that as the ratio 

DB/|J2| grows, the total magnetization undergoes a modest 

shift initially and then increases when DB/|J2| > 0. The 

magnetization rapidly increases until it reaches a saturation 

point, considerably influenced by the absolute temperature. 

The authors [6] employed Monte Carlo computations to 

investigate the magnetic properties of decorated 

ferrimagnetic mixed spin-3/2 and spin-5/2 Ising systems, 

juxtaposing our findings. Furthermore, it is worth noting 

that our present system demonstrates superparamagnetic 

characteristics when the crystal field DB/|J2| = 0, which leads 

to an overall magnetization of zero [9]. Our decorated 

system generates superparamagnetic phenomena at DA/|J2| = 

-2.5, where J1 = −0 5 and J2 = − , as shown in Fig. 8. The 

observed results closely align with the conclusions drawn by 

A. Jabar and R. Masrour [9]. Researchers found that 

increasing the crystal field leads to a rise in overall 

magnetization for various exchange interaction 

configurations involving decorating ions within a square 

lattice and between nodal and decorating ions. The 

relationship between the external magnetic field H/J2 and 

the total magnetization M is illustrated in Fig. 9. The system 

is a decorated ferrimagnetic mixed spin triangular system 

with fixed values of DA/|J2|=8 and DB/|J2|=-11. For (KBT/|J2| 

= 2,2.5,3,3.5,4) K
o
, J1 = -0.5 and J2 = 1, respectively. As the 

magnitude of H/|J2| grows, the total magnetization initially 

undergoes modest variations and eventually increases when 

H/|J2| > 0. The magnetization rapidly increases until it 

reaches a saturation point, considerably influenced by the 

absolute temperature. In addition, our current system 

exhibits superparamagnetic behaviour when the external 

magnetic field H/|J2| = 0, resulting in a total magnetization 

of zero. 
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Fig.8 The crystal field dependences DB∕ |J2| of the total magnetization M for 

a decorated ferrimagnetic mixed spin triangular system, with a constant 
value of DA∕ |J2|=-2.5, with J1 = -0.5, J2 = -1.0. 

 

 
Fig.9 The magnetic field H∕|J2| of the total magnetization M for a decorated 
ferrimagnetic mixed spin triangular system, with fixed values of DA ∕ |J2|=8. 

and DB ∕ |J2|=-11, with J1 = -0.5, J2 = 1 

 

IV. CONCLUSIONS 

We employed the mean field technique to clearly study 
the magnetic properties of a decorated ferrimagnetic mixed-
spin (2,7/2) triangular Blume-Capel device. The 
investigation centers on the influence of crystal fields and 
external magnetic fields on magnetization phenomena. The 
ferrimagnetic crystal domains have been carefully changed 
that one may reveal interesting phenomena are the behaviors 
of compensation, reentrance, and superparamagnetism, 
respectively. Figure 8 demonstrates that our current system 

displays superparamagnetic characteristics within the 15K
o≤ 

KBT/|J2|≤ 18 K
o
 range. This complex ferrimagnetic mixed 

spin triangular system has a constant ratio of DA/|J2| = -2.5, J1 
= -0.5, and J2 = -1.0. Supermagnetism is shown in Fig. (9) by 
examining the correlation between the overall magnetization 
and the external magnetic field. This analysis is conducted 
on a decorated ferrimagnetic mixed spin triangular system, 

with a constant value of DA∕|J2|=8 and DB∕ |J2|=-11, while 

J1 = -0.5 and J2 = 1, respectively. One compensation 
temperature is induced as shown in Fig.4, for each value of 

decorated magnetic anisotropy (0.5 ≤ DA/|J1|≤2.5) while 

maintaining a fixed value of DB/|J1|=-3, where J1 =-1 and J2 
=-0.5. In addition, one compensation temperature for various 
values of decorated magnetic anisotropy is illustrated in Fig. 

5, where DB/|J1|≤-3 and DA/|J1|=1, with J1 = -1 and J2 = -0.5, 

are held constant. Figure 6 illustrates the compensation 
temperature associated with each value for which the 

external magnetic field varies: 0 ≤ H/|J1|≤ 0.5, DA/|J1|=0.5, 

DB/|J1|=-3.5, J1 = -1, J2 = -0.5. However, we can still compare 
our findings to the results of M. Boughrara and M. Kerouad 
in their study on the decorated Ising film with a cubic lattice 
layout. The system consists of (1/2,1) ions, and Monte Carlo 
simulation indicates the presence of one or two 

compensatory temperatures [5]. At a constant value of DB∕
|J2| = -2.5, with J1 = −0 5 and J2 = −  0, and for KBT/|J2| = 5, 
5.2, 5.4, 5.6, and 5.8K

o
, respectively, the picture in Fig. 7 

shows how the overall magnetization is related to the 
magnetic anisotropy of a decorated sublattice, also known as 

a nodal sublattice. DA ∕  |J2| represents the magnetic 

anisotropy. The total magnetization decreases as the 

magnitude of DA∕|J2| increases. Specifically, when DA/ |J2| > 

0, this decrease affects the variation of the total 
magnetization in the considered decorated ferrimagnet. 
Residual magnetization occurs when a decorated ferrimagnet 
becomes magnetized without external influence, resulting in 

a non-zero magnetization value (M ≠ 0). [23, 24]. 
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