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Abstract—The effect of the input pulse (chirped pulse) on 

the generation of soliton wave and optical frequency comb in 

microresonators was studied. The problem was solved 

numerically using the Lugiato-Lefever equation and the 

Fourier method by MATLAB program. The effect of Gaussian 

and ultra-Gaussian pulses, as well as chirped pulses, on the 

generation of the soliton wave and the frequency comb was 

also studied. Our study demonstrated that the generation of 

the soliton and the frequency comb depends on the shape of the 

pulse intensity distribution. Moreover, the mobility of the 

soliton and comb changes depending on the shape of the pulse. 

In addition, the results showed us that the soliton and 

frequency comb generated in microresonators are strongly 

affected by the power of the incoming pulse and the radius of 

the microresonator. 

Keywords—Frequencychirp,Super-gaussian pulse, Lugiato–

Lefever equation, solitons, nonlinear optics. 

I. INTRODUCTION  

 Solitary wave dynamic research is very common 
research in nonlinear sciences, such as mathematics, optics, 
condensed matter, chemistry, biology, and soliton [1]. A 
soliton is a wave packet or pulse that moves steadily by 
maintaining its shape. They were created when nonlinear and 
dispersive processes in a medium cancel each other. This 
process does not follow the superposition principle and does 
not fade away. Long distances can be covered by soliton 
waves with little energy or structural loss. 

 Early research on solitons,  especially in optical fibers, 
made conservative assumptions about the medium's loss 
lessness and the interplay between nonlinearity and 
diffractive effects. However, it was shown later that if the 
system was continuously supplied with an external energy 
source, solitons might also develop in the presence of 
dissipation [2]. 

 The Kerr effect and dispersion, in general, cause a 
modification of the optical pulse's dynamics in the time and 
spectral form to alter during its propagation in a transparent 
material. In other words, we can say that the Kerr effect 
refers to the phenomenon in which the refractive index of the 
material changes in response to the intensity of the pulse 
passing through the medium. This effect arises from the 
interaction between the electromagnetic field of light and the 
electrons in the material. When light intensity is high, the 

Kerr effect causes a change in the refractive index, which in 
turn affects the propagation of light through the material. As 
for dispersion, it refers to the phenomenon in which different 
components of the optical pulse travel at different speeds 
through matter. This happens because different wavelengths 
of light experience different refractive indices in the material. 
As a result, the shape and duration of the optical pulse can be 
changed during propagation, leading to temporal and spectral 
modulations. When an optical pulse propagates through a 
transparent material, both  Kerr effect and scattering can 
affect its temporal and spectral properties. In some situations, 
even with extremely large propagated distances, the pulses' 
temporal and spectral structure can be preserved due to the 
precise cancellation of Kerr nonlinearity and dispersion 
effects, except for a constant phase delay per unit of 
propagation distance [3, 5]. The soliton generation in 
conventional and photonic crystal fibers was studied briefly 
[6-9]. Solitons possess highly attractive features for practical 
implementation beyond controlled environments due to their 
compacted dimensions and minimal requirements of energy. 
It was shown that the equilibrium between the cavity losses, 
cavity gain, group velocity dispersion (GVD), and Kerr 
nonlinearity can be maintained to create low-noise, coherent, 
broad-frequency combs in microresonators[4,10]. 

       In the past ten years, nonlinear physics in 
microresonators, , including breathing solitons [5], soliton 
crystals [11], Stokes solitons [12], Pockels solitons [13], 
laser cavity solitons [14], and dark solitons has been 
discovered [15]. 

       In this study, we investigated the soliton dynamics in a 
microresonator that was pumped by a CW source in 
anomalous dispersion regimes and offered a comprehensive 
analysis of the influence of starting frequency chirp on 
Gaussian pulse in SiN microresonator at 1550 nm 
wavelength. Additionally, we explored the implications of 
converting the laser beam's super-Gaussian shape, into a 
standard Gaussian profile. 

II. THEORY  

The lugiato-Lefever equation (LLE)  describes how light 
flows through a high-finesse resonator or medium. It has 
been demonstrated that there is a high between the 
theoretical and experimental results in   determining an 
equilibrium spectrum solution [16]. This enables us to 
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describe the temporal profile of the field envelope, which 
moves in the cavity at this pace. To connect the intracavity 
field at the end of one round trip with the field at the start of 
the next round trip, boundary conditions that take each round 
trip's evolution into account are required. Mathematically, 
this connection was possible by [17]. 

     (   )  √    √    ( )(   )                  (1) 

Hence, the intracavity field at the start of the (m + 1)
th
 

roundtrip is E
m+1

(0, τ) at the end of the m
th

 roundtrip. L is the 
cavity length for the SiN micro-ring resonator. 

Where φ0 gives the linear phase accumulation of the 
intracavity field for the pump field over a single roundtrip, 
and θ gives the external coupling coefficient. In the limit of 
low loss, the intracavity field envelope can be considered to 
fluctuate somewhat between consecutive round trips. Under 
these conditions, the externally driven NLSE may be 
obtained by averaging the previous infinite-dimensional 
map[18] 
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TABLE 1: THE SIMULATION PARAMETERS USED IN THIS WORK ARE THE 

TYPICAL PARAMETERS FOR A SILICON NITRIDE (SIN) RING RESONATOR [18, 
24, 25]. 

Table 

Head 

Table Column Head 

Description Value Unit Unit 

   Lasing Wavelength 1.55 μm 

n2 The nonlinear refractive index 2.4 ×10-19 m2⁄W 

 ω0 the frequency of the optical cw 
pump 

193.5 THz 

n0 the refractive index 1.99  

Aeff the effective model area of the 

resonator mode  

2.5×10-12 m2 

Q Quality factor 1.5×106  

Θ the external coupling coefficient 0.03  

Pin input cw pump power 0.5, 1, 1.5, 2 Watt 

Γ nonlinearity coefficient 1.2 W−1m−1 

Α total cavity losses inside the 

resonator 

0.00161  

β2 dispersion coefficient −4.7 × 10−26 s2m−1 

L Cavity length 428.6 µm 

tr the roundtrip time 14.28 ns 

a radius 100 µm 

τ Fast time 2 ps 

 



E (t,τ ) denotes the intracavity field, the roundtrip duration is 

tr (tr=L/C), and the slow time scale for this profile's 

progression over consecutive roundtrips is denoted by t. 

Additionally, it is presumed that the field will follow the 

cavity roundtrip time,  E(t + 2,τ) = E(t,τ), and it  determines 

the field's temporal profile in ordinary (fast) time [19]. The 

following are the meanings of the other variables in the 

formula: β represents the dispersion coefficient of second 

order, α = (αi +  )/2 denotes the total cavity losses, and δ0 = 

2kπ − φ0≪1 indicates the order of the cavity resonance that 

is closest to the driving field when the cavity is detuning 

from the nearest resonance. The coefficient of power 

transmission, represented by k, and i associated with the 

dispersion coefficients    , and γ,  the nonlinear interaction 

coefficient. 

Using the nonlinear Schrodinger equation (NLSE), the LLE 

is essentially a periodic boundary condition applied to a 

damped, driven Kerr nonlinear resonator [20]. A slow-

varying time envelope is defined, which is significant since 

it yields a mean-field solution with no field fluctuations over 

a round trip. This constraint is what sets the LLE apart from 

the more general Ikeda map [21]. Provides great physical 

representation for a wide range of systems while making 

computations simpler. Particularly, simulations built on the 

LLE formalism have made it possible to describe the 

production of microcombs in a way that quantitatively 

correlates with reported experimental results [22] (e.g., in 

terms of spectral bandwidth), Additionally, theoretical 

research has improved understanding of unique nonlinear 

dynamics that Kerr nonlinear microresonators can support 

[23]. 

 

III. RESULTS AND DISCUSSION: 

The split-step Fourier method (SSFM) was used to 

imitate the soliton dynamics within the LLE numerically 

[20]. The simulation settings that were employed for this 

study are shown in Table (1). 

 

a) The effect of the chirped pulse:  

 In the realm of optical transmission systems, there are 

a lot of practical applications for chirped solitons. Ultrashort 

pulses, consisting of very brief bursts of light, are used to 

transmit information over optical fibers. However, these 

pulses can experience dispersion, which causes the different 

frequency components of the pulse to spread out over time. 

This dispersion can degrade the quality of the transmitted 

signal [26]. 

 Chirp is a sudden shift in the cavity's center of 

wavelength caused by cavity instability. When a pulse's 

rising edge and falling edge have slightly differing 

frequencies, it chirps. Due to the carrier-induced change in 

the refractive index by pulses that are created at the 

transmitter end, the intensity modulation results in phase 

modulation. The cavity linewidth is the primary cause of 

that alteration [27]. 

 The Kerr effect which relies on the time-dependent 

pulse intensity, shifts the phase of the optical pulse during 

its traveling through the material. This results which is  so-
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called (chirp). It is a temporal variable instantaneous 

frequency. 

In this study, We provided the results of numerical studies 

of the cavity soliton (CS) dynamics in the presence of 

chirped laser pulses in this section. Concurrently, the 

chirped pulses will cause background amplitude and phase 

modulation. By applying a negative chirp parameter, the CS 

trapping sites may be moved closer to the pump pulse 

maximum, and CS can be consistently trapped at the peak 

with a high enough chirp value. Furthermore, chirped pulses 

can increase the range of existence for CSs powered by 

desynchronized chirped pulses. Apart from offering fresh 

perspectives on the behavior of CSs produced by chirped 

optical pulses, our work offered a workable solution for 

controlling the CSs in passive Kerr resonators. 

 We explored applying a single pulse to the 

dominating second-order anomalous dispersive Kerr 

resonator as we can see in Figure (1). Chirping is a term 

used when a pulse's carrier frequency changes over time. 

Frequency change and the phase derivative are closely 

related. There is a parameter called parameter C that 

controls the linear frequency chirp applied to the pulse. 

 We noticed that by changing the value of parameter 

C, chirped pulses can become broader or narrower. 

However, a broadened pulse is undoubtedly undesirable. 

The frequency chirp affects the shape of the optical pulse. In 

the regime of the anomalous dispersion, there exist 

straightforward connections among the pulse parameters E, 

T, and P0, along with the oscillator parameters β 

(representing the overall delay dispersion coefficient). γ 

indicates the self-phase modulation coefficient of a 

nonlinear medium, such as an active crystal, air, optical 

plate, etc.)[20]. 

  √      ⁄           ⁄                            (3) 

Energy scaling demands pulse stretching, which can only be 

accomplished by a large dispersion increase. Pulse 

instability must be prevented by keeping the peak power P0 

below a certain threshold value Pth. 

     √       ⁄                                                 (4) 

The presence of the so-called chirp causes a pulse to be 

stretched, and its peak power to be lowered in the usual 

dispersion regime [28].  We analyzed the effect of the initial 

chirp on the Gaussian pulse during its propagation in a 

microresonator at a wavelength of 1550 nm. The chirped 

Gaussian pulse, which we used in this study, was provided 

by [28]: 

 (   )       ( 
(    )

 
 
  

  
 )                          (5) 

The chirp parameter C describes the frequency variation 

within the pulse envelope. The Lugatio-Lefever equation 

must be solved to obtain a thorough description of all 

impacts on the propagating signal. We built our modeling 

using femtosecond pulse propagation as was mentioned in 

[6-9] 

The group velocity dispersion (GVD) effect is integrated 

into the microresonator through a variable represented by 

 2. Because the refractive index is affected by the intensity, 

it created nonlinearity and induced nonlinear chirp in the 

pulse [29]. The main nonlinear effect is self-phase 

modulation [30]. 

During the optical pulse transmission inside an optical fiber, 

the GVD broadens them. These pulses might be chirped at 

the beginning or throughout propagation. Specifically, 

depending on the signs of the chirp parameter C and the 

GVD parameter β2, a chirped pulse can be created during 

the early stages of propagation. The requirement β2 at C< 0 

met since β2<0 in the 1.55 m wavelength area of silica 

fibers. 

Known as an up chirp or positive chirp, the instantaneous 

frequency increases linearly from the leading to the trailing 

edge when C > 0. A down chirp, also known as a negative 

chirp, is the frequency that falls linearly from the leading to 

the edge that follows,C< 0. If we set C = 0, this equation 

will decrease to an unchirped Gaussian pulse as described 

by Eq. (6), as shown in fig. (3). Due to the combined effects 

of loss, dispersion, and nonlinearity in both anomalous 

dispersion regimes. 

     (   )     (  
  

   
 )                                  (6) 

Generally speaking, the chirp was classified as a 

positive or negative chirp according to whether C is positive 

or negative. 

 

 
Fig. 1:  chirped pulses used as input pulses in the study. 

 

 In this study, we used the chirped Gaussian pulse 

indicated before as input and used the split-step Fourier 

technique to numerically solve the LLE. This showed that 

the soliton wave depended on the propagation distance by 

studying the effect of slow time, according to this 

relationship (tR=L/C). Thus, we made it clear that the soliton 

wave depended on the propagation distance and the chirp 

parameter C. The characteristics that were used in the SiN 

microresonator in the anomalous dispersion regime were 

given in Table (1). 

           This microresonator was constructed of silicon 

nitride, a dielectric material commonly employed in linear 

and nonlinear optical applications. It possesses an extremely 

transparent window, minimal intrinsic loss, and a refractive 

index that allows for modest optical field confinement in 

waveguides. Nonlinear Kerr coefficients in silicon-rich 

silicon nitride waveguides made them appealing for 

nonlinear optics. In this situation, the detuning frequency 

and the noise strength term are both ignored. 

We ran the pulse for various chirp values, C=-1, -2, -3, -4, 

the same is shown in (fig. 3). While (fig. 2) showed the 

inputs and outputs of a Gaussian pulse in anomalous 
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dispersion systems of a Gaussian pulse before we entered 

the effect of the chirped. 

The chirp parameter's value of -1 added to the GVD's 

negative chirp made the chirp parameter's net value 

negative. This indicates that the pulse broadens because 

GVD dominated during the initial phases of propagation. 

The effect of the initial chirp decreases as shown in (fig. 3). 

 The pulse's shape or the distribution of intensity over 

time, was changedparticularly in the chirp at the edges. 

While the center stays close to the Gaussian wave. As a 

result, we can observe that the outgoing pulse, which was 

initially a Gaussian pulse with a small value of c, started to 

expand as the chirp coefficient increased and eventually 

split at the apex, appearing to be the result of two separate 

Gaussian pulses combined.  From  the power spectrum, we 

noticed that the greater the effect of the chirp factor, the 

greater the number and intensity of the patterns was shown 

x), as shown in  Figure (4a-4d)). Also, the center frequency 

almost began to disappear as a result of the growth in the 

adjacent frequencies to the right and left. 

*  

Fig. 2:  Input and output of a Gaussian pulse in anomalous dispersion 
regimes for a Gaussian pulse that is initially unchirped (C=0), and the input 

power  0 = (0.5, 1, 1.5, 2) 𝑊. 

 

Fig. 3a:  describes the propagation of Gaussian pulse in the frequency 

domain with P0 = (0.5, 1, 1.5, 2)W respectively and C = -1 

 

Fig. 3b:  describes the propagation of Gaussian pulse in the frequency 

domain with P0 = (0.5, 1, 1.5, 2) W respectively and C = -2 
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Fig. 3c:  describes the propagation of Gaussian pulse in the frequency 
domain P0 = (0.5, 1, 1.5, 2) W respectively and C = -3 

 

Fig. 3d:  describes the propagation of Gaussian pulse in the frequency 

domain with P0 = (0.5, 1, 1.5, 2) W respectively and, C = -4 

b) Gaussian versus super-Gaussian beams 

 Group velocity dispersion (GVD) and chirp work 

together to provide a pulse response that is drastically 

different from nonlinear effects. Dispersion regions, such as 

the normal and abnormal regions of dispersion, also 

influence the action. While the value of β2 in the normal 

dispersion region is more than zero. β2 will be less than zero 

in the abnormal dispersion region. One can examine the 

super-Gaussian pulses and their distinctive transmission 

characteristics for a range of pulse durations and super-

elevation properties in both the dispersive and chirp effects 

domains [31]. 

The shape of super-Gaussian pulses is comparable to that of 

a square digital pulse and is considered as one benefit of 

using them. The Lugatio-Lefever equation was used to 

examine the results of studying the super-Gaussian pulse 

dispersion and chirp effects. Because of the complicated 

nature of the super-Gaussian pulse, this equation is not 

analytically solvable. As a result, the numerical approaches 

are employed [32]. The Fourier split stages are the most 

often used well-known numerical technique for solving it 

[33]. 

We used a superwave in our study because we need to 

explore the use of a super-gaussian pulse and its impact on 

the microresonator output, particularly in the field of 

communications. For this purpose, we first developed the 

concept of a super-Gaussian beam. After solving equation 

(2) analytically with a MATLAB program and the values of 

the parameters that were listed in Table (1), we applied the 

split-step Fourier technique. 

 We observed from the simulation that the Super-

Gaussian pulses, also known as super-gaussian beams, had 

distribution distribution distribution deviated from the 

typical Gaussian distribution. They exhibit sharper leading 

edges and tails compared to Gaussian pulses, and that  

indicated of having  more pronounced variation in intensity 

from the center to the edges of the pulse. 

When super-Gaussian pulses propagated through 

microresonators, they experienced more significant 

expansion or spreading compared to Gaussian pulses. This 

expansion  occurred  due to the higher frequency 

components present in the sharper edges of super-Gaussian 

pulses. As the pulse propagated, these higher frequency 

components spreaded out, leading to have broadening pulse 

shape. 

Figure (4) and Figure (5a-5c) depicted the comparison of 

super-Gaussian pulse propagation along the microresonator 

with different values of the parameter "m." The "m" value 

determines the shape of the super-Gaussian pulse, with 

higher values resulting in sharper edges and tails. 

Moreover, we observed  from Fig.(5a-5c) an increasing in 

the power of the input pulse, and that caused  the ultra-

Gaussian pulse to become shorter. This phenomenon  

occurred  because of the higher input power which leads to 

have stronger nonlinear effects in the propagation medium. 

These nonlinear effects can cause self-phase modulation, 
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which altered e the pulse's phase and amplitude. 

Consequently, the pulse shape can be compressed, resulting 

in a shorter duration. 

 

 

Fig. 4: The effect of various m values on the super- Gaussian pulse along 

the  microresonator 

 

Fig. 5a:  describes the propagation of super-Gaussian pulse in the frequency 
domain with P0 =0.5 for m = 1, 2, 3, 4 respectively. 

 

Fig. 5b:  describes the propagation of super-Gaussian pulse in the 

frequency domain with P0 =1 for m = 1, 2, 3, 4 respectively. 

 

Fig. 5c:  describes the propagation of super-Gaussian pulse in the frequency 
domain with P0 =1.5 for m = 1, 2, 3, 4 respectively. 

 At a power value of 1W or more, we noticed a higher 

super factor, and more dispersion in the outgoing pulse. It 

looked like it was composed of two Gaussian pulses with 

pulses with the right side dominating due to dispersion. The 

power spectrum also expanded at frequencies to the left and 

right of the center frequency, f0, but asymmetrically, from 

the secondary frequencies and the major frequencies (to the 

right and left of the center frequency). 

 

IV. CONCLUSIONS 

We solved the lugatio-Lefever equation (LLE) using the 
split-step Fourier technique (SSFM) in simulations to show 
the impact of the input pulses on soliton formation and the 
optical frequency comb (OFC). We also showed how 
chirped, super-Gaussian, and Gaussian pulses affected the 
soliton and OFC. Our study established the pulse link 
between the input and output, which showed that the soliton 
and OFC generation features depend on the input pulse for 
various OFC scenarios. 
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