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Abstract:  

This paper aims to study the bifurcation of solution in singularly perturbed ODEs: 

    
the hypothesis      

    
the bifurcation of solution in the ODE system will be studied by effect of the system by using Lyapunov Schmidt 

reduction. Is the study of behaviour of solution of singularly perturbed ODEs when perturbation parameter           
The bifurcation of solution in this kind of ordinary differential equation was studied in n-dimensional. Sufficient 

conditions for the system to undergoes (fold,transcritical and pitchfork) bifurcation are given. The ODE will be reduced 

to an equivalent system by using Lyapunov Schmidt reduction method. Moreover, for this purpose of obtaining curve of the 

system (Fast-Slow system). 

Keywords: ODEs, Bifurcation, Singularly perturbed ODEs, Lyapunov Schmidt Re- duction. 

 

1.Introduction: 
It is known that many of nonlinear problems that 

appear in mathematics and physics can be written in the 

form of operator equation, 

F (x, y,  ) = 0,     x ∈ R
n
, y ∈ R

m
,   ∈ R.       (1.1) 

Where F is smooth map. For these problems, the 

method of the reduction to finite dimen- sional equation. 

´ x = F (x, y,  ),    (1.2) 
when 0 <    1           ý = G(x, y,  ),   (1.3) 

The method of finite dimensional reduction was 

introduced by [Lyapunov (1906)] and [Schmidt (1908)]. 

They have introduced this method to find the solution of 

equations similar to the equations (1.1).   

[Vainberg(1969)], [Loginov(1985)] and [Sapronov 

(1973,1991)] transform equation (1.1) into (1.2) by using 

Lyapunov  Schmidt Reduction with the condition that, 

equation (1.2) has all the topological and analytical 

properties of equation (1.1) (multiplicity, bifurcation 

diagram, etc). In the method of finite dimen- sional 

reduction the solutions of equations of finite dimensional 

spaces coincide with the solutions of the equations of 

finite dimensional spaces [Sapronov (2004)]. 

[Yasir(2007)] investigate the asymptotic stability of an 

equilibrium solution of the differential algebraic 

equations (DAEs) by reducing such DAEs by Liapunov 

Schmidt reduction to a corresponding one.   

[Shanan(2013)] used the method of Lyapunov Schmidt to 

study the bifurcation solutions of system of nonlinear 

differential equations. 

Consider the fast ODEs: 

´ x =f (x, y,  ),       (1.4) 
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  ý =g(x, y,  ),     (1.5) 
 
where (f, g) : R

n
 × R

m
 × R → R

n
 × R

m
, 0 <    1. 

Define the following related sets: 
 

M = {(x, y,  ) ∈ Rn × Rm × R : f (x, y,  ) = g(x, y,  ) = 0},      (1.6) 

and the set: 

   
where S is defined by: 

S  = {(x, y,  ) ∈ M  : rankDyg(x, y,  ) = m − 1}.   (1.8) 

 
Let (x0, y0,  ) ∈ M such that f (x0, y0,  ) = 0. If 

rankDyg(x0, y0,  ) = m then (x0, y0,  ) ∈ T 

and it is just a non-degenerate equilibrium point, the 

rank condition 

             rankDyg(x, y,  ) = m − 1. 

Since Dyg(x, y,  ) is singular at singular point (x0, y0,  ) 

, the solution may bifurcate at that point, there may be 

impasse for which the solution does not exist near that 

point, or the solution is well defined through the 

singularly. Our study includes the stability of 

degenerate equilibrium points (x0, y0,  ) ∈ S of the ODEs 

for which the solution near that point exists and well is 

defined. Let (x0, y0,  ) ∈ M be an equilibrium point for 

i.e.        f (x0, y0,  ) = 0 and  

  
The assumption (1.9) states that zero is an eigenvalue 

of Dyg(x0, y0,  ). 

 

2.Basic ideas: 
 

Definition 2.1  [Kuehn(2015, Fenichel (1979)] 

((m, n)-Fast-Slow System): 
System of ordinary differential equations has the 

form: 

 
is called a m fast-slow system. 

where variable x is called fast variable, variable y is 

called slow variable. A time-scale decomposition of the 

singularly perturbed system yields reduced –order 

representations for the slow and fast subsystems. More 

specifically in the limit   → 0 the fast dynamics 

become instantaneous in the slow time-scale t. By 

applying the time scale: 

setting        
 

 
 

  

  
 
  

  

  

  
 
  

  
 
  

  

 

 
  (     ) 

and 
  

  
 
  

  

  

  
 
  

  
 
 

 

  

  
 
 

 
 (     )   

  

  
  (     ) 

that gives the equivalent form: 

  
the systems (2.3), (2.4) is called n fast-slow system. It 

refers to t as the fast time scale or fast time and to τ as 

the slow time scale or slow time. 

When   approaches to 0 for system (2.3), (2.4) we get: 

ẋ  = f (x, y, 0), 

0 = g(x, y, 0), 

which represent to DAEs with index one, and it can 

be readily reduced to an ODEs. Sometimes, one finds 

that the x variables are slow and the y variables are fast 

with similar or no changes regarding the notation for 

the functions f and g. 

 

Definition 2.2[OMalley(1991)]  
The DAEs that obtained by setting   

approaches to zero in the formulation of the slow time 

scale (2.1), (2.2) is called the slow subsystem or slow 

vector field: 

0 = f (x, y, 0),                  (2.5) 

ẏ    = g(x, y, 0).                 (2.6) 
The flow generated by (2.5), (2.6) is called the slow 

flow. 

The slow subsystem is also referred to as the reduced 

problem and its flow as the reduced flow. 

 

Definition 2.3 [De-Jager(1996)]:   
The singularly perturbed ODEs obtained by 

setting   approaches to 0 

on the fast time scale formulation (2.3), (2.4) is called 

a fast subsystem or fast vector field: 

ẋ  =   f (x, y, 0),                   (2.7) (2.7) 

0 =g(x, y, 0).                          (2.8) 

The flow of (2.7), (2.8) is called the fast flow. 

 

3.Bifurcation: 
Bifurcation is a French word that has been 

introduced into nonlinear dynamics by (Poincare et al. 
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1899). Bifurcation theory studies the change in 

behavior of the system with the change in parameters 

that involves the change in the dynamics behavior. 

These changes are only qualitative in nature. But there 

may be changes in situations as well. In bifurcation 

problems, it is useful to consider a space formed by using 

the state variables and the control parameters, called the 

state-control space. The definition of bifurcation is as 

follows: 

 

Definition 3.1 [Kuznetsov(1998)]:  

The appearance of a topologically 

nonequivalent phase portrait under variation of 

parameters is called a bifurcation. 

Thus, a bifurcation is a change of the topological type of 

the system as its parameters pass through a bifurcation 

(critical) value. 

 

Definition 3.2(Bifurcation point[Sastry(1999)]: 
 The sudden change in the behavior of the 

system when a parameter passes through a critical 

value. 

 

Definition 3.3(Bifurcation diagram 

[Kuznetsov (1998)]):  
A bifurcation diagram of the dynamical 

system is a stratification of its parameter space 

induced by the topological equivalence, together with 

representative phase portraits for each stratum. 

Thus, bifurcation is a complex phenomena 

occurs in nonlinear systems, it is refers to the branching 

of solutions at some critical value parameters, which 

results in a loss of the 

structural stability and it is one of routes to 

chaos[Panfilov, Maree(2005)]. Here we will state the 

bifurcation kinds such as (fold, transcritical and 

pitchfork bifurcation). 
 

4. Singularly Perturbed ODEs [OMalley 

(1991)]: 
Singular perturbation problem is a differential 

equation with another condition having a small 

parameter that is multiplying the highest derivatives, it is 

regard one of the important sources for DAE problems. 

The fundamental reason for studying singularly 

perturbed theory is to consider a problem with a small 

parameter s and state a solution x(t,  ). Also defined is 

an unpertinurbed (neighbouring) problem with solution 

x(t, 0). If limt→0 "x(t,  )− x(t, 0)" does not lead to zero 

when   approaches to zero. A singular perturbation 

occurs whenever the limit of regular perturbation 

problem fails. Here we look at systems of the standard 

form: 

ẋ  = f (x, y, t,  ),             (4.1) (2.8)  (4.1) 

  ẏ   = g(x, y, t,  ),           (4.2) (4.2) 

 x(0) = x0, y(0) = y0.      (4.3) (4.3) 

Where f : R
n
 × R

m
 × R × R → R

n
, g : R

n
 × R

m
 × R 

× R → R
n
, x ∈ R

n
, y ∈ R

m
,   is a perturbation 

parameter. 

 

5. Liapunov-Schmidt reduction in 

ODEs[Yasir(2007)]: 
In this section we investigate the bifurcation of an 

equilibrium solution of the ordinary differential 

equations (ODEs) 

Consider the ODEs: 

  x́ =f (x, y,  ),          (5.1) 

ý =g(x, y,  ),               (5.2) 
and assume that the equilibrium point is (0, 0) for 0 

<      such that the conditions where (f, g) : R
n
 × 

R
m
 × R → R

n
 × R

m
 are C

1
. and the rank condition 

defined as: 

        rankDyg(x0, y0,  ) = m − 1,            (5.3) 

 

are satisfied.  Let Dyg(0, 0) = B  then from conditions 

(5.3) we have rank(B)(0, 0, 0) =  m − 1. Choose 

complements vector spaces H and N to kerB and 

rangeB respectively. Then 

                 R
m
 =kerB ⊕ H,                    (5.4) 

                 R
m
 =N ⊕ rangeB.                (5.5) 

Then we conclude that dimH = m − 1 and dimN = 1. 

Define the projectionsE : R
m
 → rangeB and the 

complementary projection (I − E) : R
m
 → N such that 

the ODEs (4.1),(4.2) expanded to an equivalent pairs of 

equations 

         x́ =f (x, y,  ),                          (5.6) 

ý =   Eg(x, y,  ),                    (5.7) 
and 

 x́ =f (x, y,  ),                          (5.8) 

ý =   (I − E)g(x, y,  ).             (5.9) 
Because of this splitting any vector y ∈ R

m
 can be 

decomposed in the form y = v + w, where v ∈ kerB and 

w ∈ H. Then the equation (5.6),(5.7) can be written as: 
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x́ =f (x, v + w,  ),                 (5.10) 

ý =   Eg(x, v + w,  ).           (5.11) 
 

Then in (5.11) the second equation can be considered 

as a map φ : R
n
 × kerB × H × R →rangeB, where 

 

φ(x, v, w,  ) =   Eg(x, v + w,  ). 
Now we have 

  
Since E  act as the identity map on rangeB so 

  
and since B : H → rangeB, has a full rank at (0, 0,  ), it 

follows from the implicit function theorem that the 

second equation of (5.7) can be solved uniquely for w 

near (0, 0,  ). i.e., w = W (x, v,  ), where W : R
n
 × kerB × 

R → M satisfies: 

  Eg(x, v + W (x, v,  ),  ) ≡ 0,     

  W (0, 0,  ) = 0.               (5.12) 
From (5.11) and from ODEs (4.1),(4.2) we get the 

reduced ODEs:  

x́ = F (x, v,  ),                   (5.13) 

ý =   G(x, v,  ),                (5.14) 
 

where (F, G) : R
n
 × kerB × R → R

n
 × N defined by: 

F (x, y,  ) =f (x, v + W (x, v,  ),  ),   (5.15) 

G(x, y,  ) =   (I − E)g(x, v + W (x, v,  ),  ). (5.16) 
Now the Lyapunov Schmidt reduction will generalized 

to n−dimensional subspace when perturbed parameter 0 

<    1. 

x́ =  F (x, v,  ),               (5.17) 

  ý = G(x, v,  ),              (5.18) 
Where 

       (F, G) : R
n
 × kerB × R   R

n
 × N, 

 
defined by 

F (x, v,  ) =f (x, v + W (x, v,  ),  ),          (5.19) 

G(x, v,  ) =   (I − E)g(x, v + W (x, v,  ),  ). (5.20) 

 
To see this choose explicit coordinate on kerB and N . 

For this purpose assume v and   
 be none-zero vectors 

in kerB and (rangeB)⊥ respectively. Then the vector v ∈ 

kerB can be uniquely written in the form v = yv0where y 

∈ R. 

Define 

 G̃ (x, y,  ) =<   
  G(x, yv0,  ) >, 

where G is reduced equation (5.17).  Now we show that 

G˜(x, y,  ) = 0 iff G(x, yv0,  ) = 0 so the zeros of G˜  

are one to one correspondence with the solutions of g(x, 

y,  ) = 0.  Then the function G˜ can be written in terms 

of the original ODEs (1.2), (1.3) by using (5.19), (5.20) 

(i.e) 

G̃ (x, y,  ) =<   
    g(x, yv0 + W (x, yv0,  ),  ) > .       (5.21) 

 

The function G˜ is the reduced function to the 

constraint equation g in the ODEs (1.2), (1.3) in  a  new  

change  of  coordinates. Also  the  relation  between G̃  

and  G  is  that G̃  is just a representation of G in new 

coordinates. Hence the reduced ODEs in new 

coordinate are given by  

x́ = F̃ (x, y, ),            (5.2) 

ý = G̃ (x, y,  ),            (5.23) 
where F˜, G˜ : R × Rn × R   Rn such that F˜  defined 

by  

F̃(x, y,  ) = f (x, yv0 + W (x, yv0,  ),  ),       (5.24) 
and G˜  as  defined  in  (5.21).  As  we  mentioned  

above  G˜(x, y,  ) = 0  iff  G(x, yv0,  ) = (I − E)g(x, 

yv0 + W (x, yv0,  ),  ) = 0. Thus we have: 
  

  
(       )   (   )

  

  
(       (       )  ) (   

  

  
) 

On evaluating at (0, 0,  ) we have 

  

  
(     )   (   ) (   

  

  
(     ))  

Since (I − E)   , so  
  

  
(     ). By a similar way 

we get  
  ̃

  
(     )     

That means the reduced ODEs have a singularly at (0, 

0,  ). 

 

5.1 Fold bifurcation in R
n
: 

             A fold bifurcation point is a pair of equilibria, 

meets and disappears with a zero eigenvalue 

[Perko(2001)]. One of the equilibria (saddle) is unstable 

while the other (node) is stable [Sastry(1999)]. Now,  

consider the ODEs (5.1),(5.2). We will study fold 

bifurcation of the singularly parameterized ODEs 

system by the following theorem: 

Theorem 5.1 Consider  the  ODEs  (5.1),(5.2)  

defined.on  

S0=* 
       ∈          (        )  

 (        )   +  with  an  equilibrium  point (0, 0,  ) 
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and the non-hyperbolic conditions 
  

  
(     )  0, 

  

  
(     )    

   

    
(     )   . If the following 

conditions are hold 

1.    
   
  

  
(     )      

2.    
   
   

   
(     )(   )      

Then (0, 0,  ) is a fold bifurcation point for the reduced 

ODEs (5.13),(5.14), Lyapunov Schmidt reduction is 

locally equivalent to one of the following normal forms: 
  

  
       

Proof: Suppose that (x, y,  ) = (0, 0,  ) is critical point 

and consider the reduced ODEs (5.13),(5.17) obtained 

by Lyapunov Schmidt reduction. Differentiate the 

bifurcation equation (5.17) w.r.t.α we get: 
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Evaluate at (0, 0,  ), we get: 
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from rank condition (5.3) we get: 

 
Then from condition (1) we get: 

  

  
(        )    

To prove the second condition we differentiate 

bifurcation equation (5.14) w.r.t.x twice: 
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Evaluate at (0, 0,  ) we get: 
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Then from rank condition (5.3), and from the condition 

above given in theorem we get: 

   

   
(     )   (   ) [

   

   
(      )] 

and from condition 2 we see that: 

   

   
(     )    

So the bifurcation equation (5.14) satisfy fold 

bifurcation conditions and it is locally  equivalent to one 

of the following normal forms     
  

  
       

 

5.2 Pitchfork bifurcation in R
n
: 

 In the pitchfork bifurcation, an equilibrium point 

reverses its stability, and two new equi- librium points 

are born [Perko(2001)]. Now we will state the 

pitchfork bifurcation theorem for the singularly 

parameterized ODEs(5.1),(5.2) as follows: 

 

Theorem 5.2 Consider the ODEs (5.1),(5.2),  

defined  on  S0 with  an  equilibrium point(0, 0, ). 
and suppose that the non-hyperbolic conditions  
  

  
(     )  0, 

  

  
(     )    

   

    
(     )    

are satisfied. If the following condition are hold: 

1.    
   
  

  
(     )      

2.    
   
   

   
(     )(   )         



University of Thi-Qar Journal Of Science (UTsci) 
Website: http://jsci.utq.edu.iq                                                                                   Email: utjsci@utq.edu.iq 

Volume 6, Number 4, June 2018 

 

511 

 

  

   0>,0,0

,<0,>,,,0,0,<3.

2

*

03

3
*

0















x

g

x

g

 

Then (0, 0,  ) is a pitchfork bifurcation point for the 

reduced ODEs (5.13),(5.14), when 0 <    1. 
 

Proof : Suppose that (x , y ,    ) = (0, 0, , ) is critical 

point and we differentiate (5.14) 

w.r.t.   as in theorem (5.1) we get: 
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Then from condition (1) we get: 
  

  
(     )     

To prove the second condition we differentiate 

bifurcation equation (5.14) w.r.t.x twice as in 

theorem(5.1) we get: 

To prove the second condition we differentiate 

bifurcation equation (5.14) w.r.t.x twice as in theorem 

(5.1) we get: 
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and from condition 2 we see that 

   

   
(     )   (   ) [

   

   
(      )] 

then 

   

   
(     )    

To prove the third condition we differentiate bifurcation 

equation (5.14) w.r.t.x and   we get: 
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Evaluate at (0, 0,  ) 
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Then from rank condition (5.3), and condition above 

given in theorem we get: 

   

    
(     )  (   ) [ (

   

    
(     ))]  

and from condition 3 we see that: 

   

    
(     )    

To prove    
   

   
(        ) , we differentiate (5.14) w.r.t.x 

three times as follows: 
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Evaluate at (0, 0,  ),and condition above given in 

theorem we get: 
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Then from rank condition (5.3), and condition above 

given in theorem we get : 

   

   
(     )   (   ) [

   

   
(     )]  

and from condition 3 we see that: 

   

   
(     )    

So the bifurcation equation (5.14) satisfy pitchfork 

bifurcation conditions, and it is locally equivalent to one 

of the following normal forms: 

 

5.3 Transcritical bifurcation in R
n
: 

A transcritical bifurcation is one in which an 

equilibrium point exists for all values of a parameter 

and is never destroyed [Perko(2001)]. In transcritical 

bifurcation there is an exchange of stability between 

two equilibrium points, there is one unstable and the 

other is stable equilibrium point. Now we will introduce 

the transcritical bifurcation theorem for the singularly 

parameterized ODEs as follows: 

 

Theorem 5.3 Consider the ODEs (5.1),(5.2),  

defined  on  S0 with  an  equilibrium point (0, 0, ).and 

suppose that the non-hyperbolic conditions  
  

  
(     )  0, 

  

  
(     )    

   

    
(     )    

are satisfied. If the following condition are hold: 

     
   
  

  
(     )      

     
   
   

   
(     )(   )      

     
   
   

    
(     )( )      

Then (0, 0,  ) is a transcritical bifurcation point for 

the singularly parameterized ODEs (5.13),(5.14), 

when 0 <    1. 

 

Proof : Suppose that (x , y ,    ) = (0, 0,  ) is critical 

point, we differentiate (5.14) w.r.t.   as in theorem(5.1) 

we get: 

  

  
(        )   [(   ) (

  

  
(     ))]  (   ) (     ) 

Then from condition (1) we get: 
  

  
(        )     

and  

   

   
(     )   (   ) [

   

   
(      )] 

from condition 2 we see that: 

   

   
(     )    

Also form the proof of theorem (5.2) we can see: 

   

    
(     )  (   ) [ (

   

    
(     ))] 

and from condition 3 we see that: 

   

    
(     )    

So the bifurcation equation (5.14) satisfy transcritical 

bifurcation conditions, and it is locally equivalent to 

one of the following normal forms: 
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