ISSN 1991- 8690	الترقيم الدولي ٢٩٩٠ _ ١٩٩١
website: http://jsci.utq.edu.iq	Email: utjsci@utq.edu.iq
Generalized GN'–Function for n–Variable	
Hadeel A. Shubber	Abeer A.A. Aladhab
Department of Mathematics- College of Education	College of Art,
Thi-Qar University	
	الملخص

Vol.3 (4)

Feb./2013

في هذا العمل وسعنا نظرية الاعتيادية لفضاءات اورلسزالمتولدة بواسطة المتغيرات الحقيقية وبشكل خاص الدالة المتغيرات n عممناها لـ –*GN

ABSTRACT

In this work, we extend the usual theory of Orlicz spaces generated by real valued N-functions of a real variable. In particular, GN*-functions are the generalization of the variable N-functions used by Portnov and the non-decreasing -function by Wang.

Firstly, we begin with new definitions:

J.Thi-Qar Sci.

1 Introduction and Basic Concept

In what follows T will denote a space of point with σ -finite measure and E^n a dimensional Euclidean space.

Definition1.1[4]

Orlicz space $\mathcal{L}_{\mathcal{M}} = \mathcal{L}_{\mathcal{M}}(\Omega, \mu)$ is a Banach space consisting of all $f \in S(\Omega, \mu)$ where $S(\Omega, \mu)$ is a

ring of all measurable functions on the space with bounded measure (Ω, μ) .

such that $\int_{\Omega} M(|f|) d\mu < \infty$,

With the Luxemburg Nakano norm $||f||_M = \inf\{\lambda > 0 : \int_{\Omega} M(\frac{|f|}{\lambda}) d\mu \le 1\}$

Orlicz spaces Lm are natural generalization of Lp space, where Lp(I) consists of all the measurable functions f defined on the interval I for which

$$\left(\int_{I} \left| f \right|^{p} \right)^{\frac{1}{p}} < \infty$$
 [1]

They have very rich topological and geometrical structures; they may possess peculiar properties that do not occur in an ordinary L_p space.

Definition1.2:[3]

Let $M: I \rightarrow R$ be defined on some interval of the real line R. A function M is called convex if

$$M(\frac{u_1 + u_2}{2}) \le \frac{1}{2}(M(u_1) + M(u_2))$$
(1.2.1)

for all
$$u_1, u_2 \in I$$

Definition 1.3:[2]

Let M(t, x, y) be a real valued non-negative function defined on $T \times E^n \times E^n$ such that:

(i) M(t, x, y) = 0 if and only if x, y are the zero vectors $x, y \in E^n$, $\forall t \in T$

(ii) M(t, x, y) is a continuous convex function of x, y for each t and a measurable function of t for each x, y,

(iii) For each
$$t \in T$$
, $\lim_{\|x\| \to \infty} \frac{M(t, x, y)}{\|x\| \|y\|} = \infty$, and

(iv)There are constants $d \ge 0$ and $d_1 \ge 0$ such that

$$\inf_{t} \inf_{\substack{c \ge d \\ c' \ge d_1}} k(t, c, c') > 0$$
(1.3.1)

Where

$$k(t,c,c') = \frac{\underline{M}(t,c,c')}{\overline{M}(t,c,c')},$$

$$\overline{M}(t,c,c') = \sup_{\substack{|x|=c\\ y|=c'}} M(t,x,y), \underline{M}(t,c,c') = \inf_{\substack{|x|=c\\ y|=c'}} M(t,x,y) \quad \text{and if } d \rangle 0 \text{ and } d_1 > 0,$$

then $\overline{M}(t, d, d_1)$ is an integrable function of t. We call the function satisfying the properties (i)-(iv) a generalized N*-function or a GN*-function.

Vol.3 (4)

Definition 1.4:

Let $M(t, x_1, x_2, ..., x_n)$ be a real valued non-negative function defined on $T \times E^n \times E^n \times ... \times E^n$ such $\sum_{n-times}^{n-times} E^n \times ... \times E^n$

that: (i) $M(t, x_1, x_2, ..., x_n) = 0$ if and only if $x_1, x_2, ..., x_n$ are the zero vectors $x_1, x_2, ..., x_n \in E^n$, $\forall t \in T$

(ii) $M(t, x_1, x_2, ..., x_n)$ is a continuous convex function of $x_1, x_2, ..., x_n$ for each t and a measurable function of t for each $x_1, x_2, ..., x_n$,

(iii) For each
$$t \in T$$
, $\lim_{\substack{\|x_1\| = \infty \\ x_2 \\ x_n \\$

(iv)There are constants $d_1 \ge 0, d_2 \ge 0, \dots, d_n \ge 0$ such that

$$\inf_{\substack{t \ c \ge d \\ c^1 \ge d \\ c^2 \ge d^2 \\ c^2 \ge d^2}} k(t, c_1, c_2, \dots, c_n) > 0$$
(1.4.1)

Where

$$k(t,c_{1},c_{2},...,c_{n}) = \frac{\underline{M}(t,c_{1},c_{2},...,c_{n})}{\overline{M}(t,c_{1},c_{2},...,c_{n})},$$

$$\overline{M}(t,x_{1},c_{2},...,c_{n}) = \sup_{\substack{|x_{1}|=c_{1}\\|x_{2}|=c_{2}\\|x_{n}|=c_{n}}} M(t,x_{1},x_{2},...,x_{n}), \qquad \underline{M}(t,c_{1},c_{2},...,c_{n}) = \inf_{\substack{|x_{1}|=c_{1}\\|x_{2}|=c_{2}\\|x_{n}|=c_{n}}} M(t,x_{1},x_{2},...,x_{n})$$

and if $d_1 > 0, d_2 > 0, ..., d_n > 0$, then $\overline{M}(t, d_1, d_2, ..., d_n)$ is an integrable function of t. We call the function satisfying the properties (i)-(iv) a generalized N'-function or a GN'-function.

Example:

GN'-functions are coordinate independent and are not necessarily symmetric. Therefore, such functions as $M(t, x_1, x_2, ..., x_n)$ $M(t, x_1, x_2, ..., x_n) = (x_1 + y_1)^2 + (x_2 + y_2)^2$ $+ [(x_1 + y_1) - (x_2 + y_2) - ... - (x_n + y_n)]^2$

Vol.3 (4)

Feb./2013

which are nt non-decreasing (as defined in [3]) are allowed in the class of GN'-functions. The next theorem illustrates this point.

Theorem 1.5:[2]

If M(t,x,y) is a GN*-function and A is an orthogonal linear transformation defined on $E^n \times E^n$, with the range in $E^n \times E^n$, then $\widetilde{M}(t,x,y) = M(t,Ax,Ay)$ is a GN*-function.

Theorem 1.6:[2]

A necessary and sufficient condition that (1.3.1) holds is that if

 $|x| \le |z|$ and $|y| \le |w|$, then there exists constants $K \ge 1, d \ge 0$ and $d' \ge 0$ such that $M(t, x, y) \le KM(t, z, w)$ for each t in T, $|x| \ge d$ and $|y| \ge d'$.

Remark:[2]

It is interesting to note that if M(t, x, y) is a GN*-function, then $2\hat{M}(t, x, y) = M(t, x, y) + \tilde{M}(t, x, y)$ is also a GN*-function where $\tilde{M}(t, x, y)$ is defined as in Theorem 1.5. This means we can construct a symmetric (in x and y) GN*-function from one which does not possess this property.

For, if $\widetilde{M}(t, x, y) = M(t, -x, -y)$, then $\widehat{M}(t, x, y)$ is clearly symmetric in x and y.

Property (iv) of the definition 1.3 provides the condition which allows a natural gen eralization from GN*-function of a real variable to those of several real variables. Let us observe that the function $\overline{M}(t,c,c')$ is also a GN*-function of a real nonnegative variable c and c'. On the other hand, M(t,c,c') need not even be convex in c and c'.

Since $\underline{M}(t,c,c') \le M(t,x,y) \le \overline{M}(t,c,c')$ for each x and y such that |x| = c and |y| = c' we would like to find a GN*-function which bounds

 $\underline{M}(t,c,c')$ from below for all c and c'. If d=0 and d'=0 in Theorem (1.6), then $K^{-1}\overline{M}(t,c,c')$ would do.

One might accomplish the construction of such a function by taking the supremum of a class of convex functions bounding $\underline{M}(t,c,c')$ from below. This function would be convex. However, this class may be empty. The next theorem shows that this is not the case whenever M(t,x,y) is a GN*-function. The construction employed can be applied to more general settings than those which exist here.

Vol.3 (4)

Theorem 1.7:[2]

If M(t, x, y) is a GN*-function and $\underline{M}(t, c, c')$ is defined as above, then there exists a GN*-function R(t, c, c') such that $R(t, c, c') \leq \underline{M}(t, c, c')$ for all $c \geq 0$ and $c' \geq 0$.

2. Generalized GN'-Function

Theorem 2.1:

If $M(t, x_1, x_2, ..., x_n)$ is a GN'-function and A is an orthogonal linear transformation defined on $E^n \times E^n \times ... \times E^n$, with the range $\operatorname{in} E^n \times E^n \times ... \times E^n$, then $\widetilde{M}(t, x_1, x_2, ..., x_n) = M(t, Ax_1, Ax_2, ..., Ax_n)$ is a GN'-function.

Proof:

Properties (i)-(iv) when applied to $\widetilde{M}(t, x_1, x_2, ..., x_n)$ follow immediately from the same properties for $M(t, x_1, x_2, ..., x_n)$ (see [5, Th 8.1]).

The next theorem characterizes a part of the property (iv) in the definition 1.4 and provides a means of comparing function values at different points for GN'-function when $|x_1|, |x_2|, \dots, |x_n|$ are large.

Theorem 2.2:

A necessary and sufficient condition that (1.4.1) holds is that if $|x_1| \le |y_1|, |x_2| \le |y_2|, ..., |x_n| \le |y_n|$ then there exists constants $K \ge 1, d_1 \ge 0, d_2 \ge 0, ..., d_n \ge 0$ such that $M(t, x_1, x_2, ..., x_n) \le KM(t, y_1, y_2, ..., y_n)$ for each t in T, $|x_1| \ge d_1, |x_1| \ge d_1, ..., |x_n| \ge d_n$

Proof:

If (1.4.1) is true, then there exists constants $d_1 \ge 0, d_2 \ge 0, ..., d_n \ge 0$ such that $\tau(t) = \inf_{\substack{c = d \\ 1 = 1}} k(t, c_1, c_2, ..., c_n) > 0$ for each t in T. By the definition of $K(t, c_1, c_2, ..., c_n)$ this means $c_1 = d_2 = d_2$ $c_2 = d_n$

$$M(t, x_{1}, x_{2}, ..., x_{n}) \ge \underline{M}(t, |x_{1}|, |x_{2}|, ..., |x_{n}|) \ge \tau(t)\overline{M}(t, |x_{1}|, |x_{2}|, ..., |x_{n}|)$$
(2.2.1)

for any $x_1, x_2, ..., x_n$ such that $|x_1| = c_1 \ge d_1, |x_2| = c_2 \ge d_2, ..., |x_n| = c_n \ge d_n$. On the other hand, if $d_1 \le |x_1| \le |y_1|, d_2 \le |x_2| \le |y_2|, ..., d_n \le |x_n| \le |y_n|$ then the convexity of $M(t, x_1, x_2, ..., x_n)$ and M(t, 0, 0, ..., 0) = 0 yields $\overline{M}(t, |y_1|, |y_2|, ..., |y_n|) \ge \sup_{\substack{|z_1| = |x_1| \\ |z_2| = |x_2| \\ z_n| = |x_n|}} M(t, z_1, z_2, ..., z_n)$ (2.2.2)

By combining (2.2.1) and (2.2.2), we arrive at

$$M(t, y_{1}, y_{2}, ..., y_{n}) \ge \tau(t) \sup_{\substack{|z_{1}|=|x_{1}|\\|z_{2}|=|x_{2}|\\|z_{n}|=|x_{n}|}} M(t, z_{1}, z_{2}, ..., z_{n}) \ge K^{-1}M(t, x_{1}, x_{2}, ..., x_{n}),$$

When ever $d_1 \le |x_1| \le |y_1|, d_2 \le |x_2| \le |y_2|, ..., d_n \le |x_n| \le |y_n|$ where $K^{-1} = \inf_t \tau(t) > 0$.

The converse follows easily from the condition in the theorem.

Remark:

It is interesting to note that if $M(t, x_1, x_2, ..., x_n)$ is a GN'-function, then $2\hat{M}(t, x_1, x_2, ..., x_n) = M(t, x_1, x_2, ..., x_n) + \tilde{M}(t, x_1, x_2, ..., x_n)$ is also a GN'-function where $\tilde{M}(t, x_1, x_2, ..., x_n)$ is defined as in Theorem 2.1. This means we can construct a symmetric (in $x_1, x_2, ..., x_n$) GN'-function from one which does not possess this property. For, if $\tilde{M}(t, x_1, x_2, ..., x_n) = M(t, -x_1, -x_2, ..., -x_n)$, then $\hat{M}(t, x_1, x_2, ..., x_n)$ is clearly symmetric in $x_1, x_2, ..., x_n$.

Property (iv) of the definition 1.4 provides the condition which allows a natural generalization from N'function of a real variable to those of several real variables. Let us observe that the function $\overline{M}(t, c_1, c_2, ..., c_n)$ is also a GN'-function of a real nonnegative variable $c_1, c_2, ..., c_n$. On the other hand, $M(t, c_1, c_2, ..., c_n)$ need not even be convex in $c_1, c_2, ..., c_n$. Since $\underline{M}(t, c_1, c_2, \dots, c_n) \leq M(t, x_1, x_2, \dots, x_n) \leq \overline{M}(t, c_1, c_2, \dots, c_n)$ for each c_1, c_2, \dots, c_n such that $|x_1| = c_1, |x_2| = c_2, \dots, |x_n| = c_n$ we would like to find a GN'-function which bounds $\underline{M}(t, c_1, c_2, \dots, c_n)$ from below for all c_1, c_2, \dots, c_n . If $d_1 = 0, d_2 = 0, \dots, d_n = 0$ in Theorem (2.2),

then $K^{-1}\overline{M}(t,c_1,c_2,...,c_n)$ would do.

One might accomplish the construction of such a function by taking the supremum of a class of convex functions bounding $\underline{M}(t, c_1, c_2, ..., c_n)$ from below. This function would be convex. However, this class may be empty. The next theorem shows that this is not the case whenever $M(t, x_1, x_2, ..., x_n)$ is a GN'-function. The construction employed can be applied to more general settings than those which exist here.

Theorem 2.3:

If $M(t, x_1, x_2, ..., x_n)$ is a GN'-function and $\underline{M}(t, c_1, c_2, ..., c_n)$ is defined as above, then there exists a GN'-function $R(t, c_1, c_2, ..., c_n)$ such that $R(t, c_1, c_2, ..., c_n) \le \underline{M}(t, c_1, c_2, ..., c_n)$ for all $c_1 \ge 0, c_2 \ge 0$,..., $c_n \ge 0$

Proof:

Since $\underline{M}(t, c_1, c_2, ..., c_n)$ satisfies property (iii) of the definition 1.4, given any d > 0 there are $c'_1 > 0, c'_2 > 0, ..., c'_n > 0$ such that $\underline{M}(t, c_1, c_2, ..., c_n) \ge dc_1 c_2 ... c_n$ whenever $c_1 \ge c'_1, c_2 \ge c'_2, ..., c_n \ge c'_n$. Let us define the function

Vol.3 (4)

Feb./2013

Then, it is easy to show that (i) $P(t, ac_1, ac_2, ..., ac_n) \le a^n P(t, c_1, c_2, ..., c_n)$ for $0 \le a \le 1$,

(ii)
$$\left\{\frac{p(t,c_1,c_2,...,c_n)}{c_1c_2..c_n}\right\}$$
 is a non-decreasing function of $c_1,c_2,...$ and c_n , and (iii) $P(t,c_1,c_2,...,c_n)$ is finite

for each c_1, c_2, \dots and c_n . We now obtain the desired function $R(t, c_1, c_2, \dots, c_n)$ by defining

$$R(t,c_1,c_2,...,c_n) = \int_{0}^{1} \int_{0}^{2} ... \int_{0}^{n} Q(t,s_1,s_2,...,s_n) ds_1 ds_2 ... ds_n$$

where

$$Q(t,c_{1},c_{2},...,c_{n}) = \begin{cases} \frac{P(t,c_{1},c_{2},...,c_{n})}{c_{1}c_{2}..c_{n}} & \text{if } c_{1} \ge c_{1}',c_{2} \ge c_{2}',...,c_{n} \ge c_{n}' \\ \frac{c_{1}c_{2}..c_{n}}{c_{1}'2}c_{2}'...c_{n}'}{c_{1}'c_{2}'2}c_{2}'...,c_{n}' & \text{if } 0 \le c_{1} < c_{1}',0 \le c_{2} < c_{2}',0 \le c_{n} < c_{n}' \end{cases}$$

Immediately we have

$$R(t,c_{1},c_{2},...,c_{n}) \leq c_{1}c_{2}...c_{n}Q(t,c_{1},c_{2},...,c_{n}) = P(t,c_{1},c_{2},...,c_{n}) \leq \underline{M}(t,c_{1},c_{2},...,c_{n}).$$

It is not difficult to show that $R(t, c_1, c_2, ..., c_n)$ is also a GN'-function.

References

1.N.Corothers (2000):"A short course on Banach space theory ".Bowling Green state university.

2.**H.A.Hassen** (2007):"Vector Valued Orlicz Space Generalized GN*-function"Msc.thesis.Kufa University. Department of Mathematic.College of Education.

3.A.Roberts and D.Varberg (1973):"Convex functions ".Newyork.

- 4.W.Orlicz (1932):"Vber eine gewisse klasic von Räumen vom Typus".BBull.Int.Acad Polon.Sci.207-220.
- 5. Wang Sheng-Wang (1963):"Convex function of several variables and vector valued Orlicz spaces".Bull.Aead.POLOn.Sc.ser.math. Astr.et Phys.11, 279-284.