ISSN 1991-8690 website: http://jsci.utq.edu.iq الترقيم الدولي ٢٩٩٠ ـ ١٩٩١ Email: utjsci@utq.edu.iq

Some types of fuzzy ideals in semigroups

Rabee Hadi Jari Akram Barazan Attar

Department of Mathematics - College of Education University of Thi-Qar.

Abstract

In this paper ,we study the notion of fuzzy ideal in semigroups and give some properties about it and we reviewed some types of ideals such as (regular,semiprime,(1,2)- ideal,(2,2)-ideal and gives some relationships between them.

<u>1. Introduction:</u>

As a continuation to the study of fuzzy sets which initiated in[1]and which have been studied by Goguen in [2] and several researchers explored on the generalization of the notion of fuzzy set. The concept of an intuitionistic fuzzy set was introduced byAtanssov K.Y.[3], as a generalization of the notion of fuzzy set. Fuzzy ideals and fuzzy biideal,(1,2)-ideals in semigroup was introduced by S.Lajos and N.Kuroki [4,5]. Our interest in this paper is to study some of their important properties.

2. Preliminaries:

In this section ,we shall give the concepts of fuzzy sets and basic definitions with some related properties which will be used in the next sections.

Definition 2.1[1]:

A fuzzy set in a set *M* is a mapping *X* from a nonempty set *M* into [0, 1].

Definition 2.2 [1] :

Let A and B be two fuzzy sets in M.Then:

1.*A* \subseteq *B* if and only if *A*(*x*) \leq *B*(*x*)

 $2.(A \cap B)(x) = min \{A(x), B(x)\}, \text{ for all } x \in M.$

Definition 2.3[6]:

A fuzzy set X in a ring R is called a fuzzy ideal of R if for each $x, y \in R$.

- $1 X(x-y) \ge \min \{X(x), X(y)\}.$
- $2\text{-} X(xy) \geq max \{X(x), X(y)\}.$

3. Intuitionistic Q- fuzzy ideals

Definition 3.1[7]:

An intuitionistic Q-fuzzy set A is an object having the form

 $A = \{(x, \mu_A(x, q), \gamma_A(x, q)) : x \in X, q \in Q\} \text{ where the function } \mu_A : X \times Q \to [0,1] \text{ and } \gamma_A : X \times Q \to [0,1] \text{ denoted by the degree of membership(namely } \mu_A(x,q)) \text{ and the degree of nonmembership } \gamma_A(x,q) \text{ of each element } (x,q) \in X \times Q \text{ to the set } A, \text{ respectively, and } 0 \le \mu_A(x,q) + \gamma_A(x,q) \le 1 \text{ for all } x \in X \text{ and } q \in Q.$

For the sake of simplicity, we shall use the symbol $A = (\mu_A, \gamma_A)$ for the IQFS $A = \{(x, \mu_A(x,q), \gamma_A(x,q)) : x \in x, q \in Q\}.$

Definition 3.2 [7] :

An IQFS $A = (\mu_A, \gamma_A)$ in S is called an intuitionistic Q-fuzzy subsemigroup of S if $1. \mu_A(xy,q) \ge \min \{\mu_A(x,q), \mu_A(y,q)\}.$

2. $\gamma_A(xy,q) \le \max\{\gamma_A(x,q), \gamma_A(y,q)\}$, for all $x, y \in S$ and $q \in Q$.

Definition 3.3 [7]:

An IQFS $A = (\mu_A, \gamma_A)$ in S is called an intuitionistic Q-fuzzy left ideal of S if

1. $\mu_A(xy,q) \ge \mu_A(y,q)$,

2. $\gamma_A(xy,q) \le \gamma_A(y,q)$, for all x, $y \in S$ and $q \in Q$.

Definition 3.4 [7]:

An intuitionistic Q-fuzzy intuitionistic subsemigroup $A = (\mu_A, \gamma_A)$ of S is called an intuitionistic Q-fuzzy bi-ideal of S if

- 1. $\mu_A(xwy,q) \ge \min\{\mu_A(x,q),\mu_A(y,q)\},\$
- 2. $\gamma_A(xwy,q) \le \max\{\gamma_A(x,q),\gamma_A(y,q)\}$, for all $x, y, w \in S$ and $q \in Q$.

Proposition 3.5:

If A_i is an intuitionistic Q-fuzzy bi-ideal of S $\forall i \in \land$, then $\cap A_i$ is an intuitionistic Q-fuzzy bi-ideal , where $\cap A_i = (\land \mu_{A_i}, \lor \gamma_{A_i})$ and $\land \mu_{A_i}(x) = \inf \{ \mu_{A_i}(x) / i \in \land, x \in S \}, \lor \gamma_{A_i}(x) = \sup \{ \gamma_{A_i}(x) / i \in \land, x \in S \}.$

Proof:

To prove $\cap A_i$ is an intuitionistic Q-fuzzy subsemigroup

$$\wedge \mu_{A_{i}}(xy,q) \geq \wedge \{\min \{\mu_{A_{i}}(x,q), \mu_{A_{i}}(y,q)\} \}$$

= min {min { $\mu_{A_{i}}(x,q), \mu_{A_{i}}(y,q)$ }} = min {min { $\mu_{A_{i}}(x,q), \min \mu_{A_{i}}(y,q)$ }} = min { $\wedge \{\mu_{A_{i}}(x,q), \wedge \mu_{A_{i}}(y,q)\} \}$

and

Thus, $\cap A_i$ is an intuitionistic Q-fuzzy intuitionistic subsemigroup of S.

To prove $\cap A_i$ is Q-fuzzy bi-ideal of S.

Let $x, y, a \in S$, then $\mu_{A_i}(xay, q) \ge \wedge \{\min \{\mu_{A_i}(x, q), \mu_{A_i}(y, q)\}\} = \min \{\min \{\mu_{A_i}(x, q), \mu_{A_i}(y, q)\}\} = \min \{\min \{\mu_{A_i}(x, q), \min \mu_{A_i}(y, q)\}\} = \min \{\wedge \{\mu_{A_i}(x, q), \wedge \mu_{A_i}(y, q)\}\}$

and

$$\vee \gamma_{A_i}(xay,q) \leq \vee \left\{ \max \left\{ \gamma_{A_i}(x,q), \gamma_{A_i}(y,q) \right\} \right\} = \max \left\{ \max \left\{ \gamma_{A_i}(x,q), \gamma_{A_i}(y,q) \right\} \right\} = \max \left\{ \max \left\{ \gamma_{A_i}(x,q), \max \gamma_{A_i}(y,q) \right\} \right\} = \max \left\{ \vee \gamma_{A_i}(x,q), \vee \gamma_{A_i}(y,q) \right\}.$$

Hence, $\cap A_i$ is intuitionistic Q-fuzzy bi-ideal of S.

Definition 3.6 [8]:

An intuitionistic Q-fuzzy intuitionistic subsemigroup $A = (\mu_A, \gamma_A)$ of S is called an intuitionistic fuzzy (1,2)-ideal of S if

1. $\mu_A(xw(yz),q) \ge \min\{\mu_A(x,q),\mu_A(y,q),\mu_A(z,q)\},\$

2. $\gamma_A(xw(yz),q) \le \max\{\gamma_A(x,q),\gamma_A(y,q),\gamma_A(z,q)\}$ for all w,x,y,z \in S and q \in Q.

Proposition 3.7:

Every intuitionistic Q-fuzzy bi-ideal is an intuitionistic Q-fuzzy (1,2)-ideal.

Proof:

Let $A = (\mu_A, \gamma_A)$ be an intuitionistic Q-fuzzy intuitionistic bi-ideal of S and let $w, x, y, z \in S$ and $q \in Q$, then

$$\mu_{A}(xw(yz),q) = \mu_{A}(x(wy)z,q) \ge \min\{\mu_{A}((xwy),q),\mu_{A}(z,q)\} \ge \min\{\min\{\mu_{A}(x,q),\mu_{A}(y,q),\mu_{A}(z,q)\}\} = \min\{\{\mu_{A}(x,q),\mu_{A}(y,q),\mu_{A}(z,q)\}\}$$

and

$$\gamma_A(xw(yz),q) = \gamma_A(xwy)z,q) \le \max\{\gamma_A((xwy),q),\gamma_A(z,q)\} = \max\{\gamma_A(x,q),\gamma_A(y,q),\gamma_A(z,q)\}.$$

Thus, $A = (\mu_A, \gamma_A)$ is an intuitionistic Q-fuzzy (1,2)-ideal of S.

Recall that a semigroup S is said to be regular if, for each $x \in S$, there exists $y \in S$ such that x=xyx,[9].

Proposition 3.8:

If S is a regular semigroup, then every intuitionistic Q-fuzzy (1,2)-ideal of S is an intuitionistic Q-fuzzy bi-ideal.

Proof:

Suppose that S is a regular semigroup and let $A = (\mu_A, \gamma_A)$ be an intuitionistic Q-fuzzy (1,2)-ideal of S.

Let $w, x, y \in S$, since S regular, then $xw \in (xSx)S \subseteq xS$, it follows xw=xsx for some $s \in S$, consequently

$$\mu_{A}(xwy,q) = \mu_{A}((xsx)y,q) = \mu_{A}(xs(xy),q) \ge \min\{\mu_{A}(x,q),\mu_{A}(x,q),\mu_{A}(y,q)\} = \min\{\mu_{A}(x,q),\mu_{A}(y,q)\}$$

and

$$\gamma_A((xwy),q) = \gamma_A((xsx)y,q) = \gamma_A(xs(xy),q) \le \max\{\gamma_A(x,q),\gamma_A(x,q),\gamma_A(y,q)\} = \max\{\gamma_A(x,q),\gamma_A(y,q)\}$$

Hence $A = (\mu_A, \gamma_A)$ is intuitionistic Q-fuzzy bi-ideal of S.

Recall that, A semigroup S is said to be (2,2)-regular if $x \in x^2 S x^2$ for all $x \in S$, [9,10].

Proposition 3.9:

Let $A = (\mu_A, \gamma_A)$ be an intuitionistic Q-fuzzy bi-ideal of S.If S is a (2,2)-regular, then $A(a,q) = A(a^2,q)$ for all $a \in S$.

Proof:

Let $a \in S$, since S is (2,2)-regular, then $a \in a^2Sa^2$, implies that $a = a^2xa^2$ for some $x \in S$.

Now,
$$\mu_A(a,q) = \mu_A(a^2xa^2,q) \ge \min\{\mu_A(a^2,q),\mu_A(a^2,q)\} = \mu_A(a^2,q)$$

 $\ge \min\{\mu_A(a,q),\mu_A(a,q)\} = \mu_A(a,q)$

also,

$$\gamma_A(a,q) = \gamma_A(a^2 x a^2, q) \le \max \left\{ \gamma_A(a^2,q), \gamma_A(a^2,q) \right\} = \gamma_A(a^2,q) \le \max \left\{ \gamma_A(a,q), \gamma_A(a,q) \right\} = \gamma_A(a,q) .$$

Hence, $\mu_A(a,q) = \mu_A(a^2,q)$ and $\gamma_A(a,q) = \gamma_A(a^2,q)$; that is $A(a,q) = A(a^2,q)$.

Recall that, a semigroup S is called intra-regular if, for each element a of S, there exists elements x and y in S such that $a = xa^2y$, [9].

Proposition 3.10:

Let $A = (\mu_A, \gamma_A)$ be an intuitionistic Q-fuzzy ideal of S.If S is an intra-regular, then $A(a,q) = A(a^2,q)$ for all $a \in S$ and $q \in Q$.

Proof:

L et $a \in S$, since S is intra-regular, there exist x and $y \in S$ such that $a = xa^2y$.

Now,
$$\mu_A(a,q) = \mu_A(xa^2y,q) \ge \mu_A(xa^2,q) \ge \mu_A(a^2,q) \ge \{\mu_A(a,q),\mu_A(a,q)\} = \mu_A(a,q).$$

Also, $\gamma_A(a,q) = \gamma_A(xa^2y,q) = \gamma_A(xa^2,q) \le \gamma_A(a^2,q) \le \max\{\gamma_A(a,q),\gamma_A(a,q)\} = \gamma_A(a,q).$
Since $\mu_A(a,q) = \mu_A(a^2,q)$ and $\gamma_A(a,q) = \gamma_A(a^2,q)$, then $A(a,q) = A(a^2,q).$

Corollary3.11;

Let $A = (\mu_A, \gamma_A)$ be an intuitionistic Q-fuzzy ideal of S.If S is intra-regular, then A(ab,q) = A(ba,q) for all $a, b \in S$.

Proof:

Let
$$a, b \in S$$
. Then by Proposition 3.10,
 $\mu_A(ab,q) = \mu_A((ab)^2,q) \ge \mu_A((a(ba)b,q) \ge \mu_A(ba,q) = \mu_A((ba)^2,q)$
 $\ge \mu_A(b(ab)a,q) \ge \mu_A(ab,q)$.

and

$$\begin{split} \gamma_A(ab,q) &= \gamma_A((ab)^2,q) = \gamma_A(a(ba)b,q) \le \gamma_A(ba,q) = \gamma_A((ba)^2,q) = \\ \gamma_A(b(ab)a,q) \le \gamma_A(ab). \end{split}$$

Hence $\mu_A(ab,q) = \mu_A(ba,q)$ and $\gamma_A(ab,q) = \gamma_A(ba,q)$, so $A(ab,q) = A(ba,q)$.

4. Intuitionistic fuzzy ideals

Definition 4.1[10]:

An intuitionistic fuzzy set (brifly,IFS) A in a non-empty set X is an object having the form $A = \{(x, \mu_a(x),, \gamma_A(x)) : x \in X\}$ where the function $\mu_A : X \to [0,1]$ and $\gamma_A : X \to [0,1]$ denoted by the degree of membership and the degree of non

membership,respectively,and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for all $x \in X$. An intuitionistic fuzzy set $A = \{(x, \mu_A(x), \gamma_A(x)) : x \in X\}$ in X can be identified to an order pair (μ_A, γ_A) in $I^X \times I^X$. For the sake of simplicity, denoted by the symbol $A = (\mu_A, \gamma_A)$ for the IFS $A = \{(x, \mu_A(x), \gamma_A(x)) : x \in X\}.$

Definition 4.2 [9]:

An IFS $A = (\mu_A, \gamma_A)$ in S is called an intuitionistic fuzzy subsemigroup of S if

- 1. $\mu_A(xy) \ge \min\{\mu_A(x), \mu_A(y)\}.$
- 2. $\gamma_A(xy) \le \max\{\gamma_A(x), \gamma_A(y)\}, \text{ for all } x, y \in S$.

Definition 4.3 [9]:

An IFS $A = (\mu_A, \gamma_A)$ in S is called an intuitionistic fuzzy left ideal of S if

1.
$$\mu_A(xy) \ge \mu_A(y)$$
,

2. $\gamma_A(xy) \le \gamma_A(y)$, for all $x, y \in S$.

Definition 4.4 [3]:

An IFS $A = (\mu_A, \gamma_A)$ in S is called intuitionistic fuzzy semiprime if

1.
$$\mu_A(x) \ge \mu_A(x^2)$$

2. $\gamma_A(x) \leq \gamma_A(x^2)$, for all $x \in S$.

Proposition 4.5 :

For any intuitionistic fuzzy subsemigroup $A = (\mu_A, \gamma_A)$ of S, if $A = (\mu_A, \gamma_A)$ is intuitionistic fuzzy semiprime, then $A(a) = A(a^2)$.

Proof:

Let $a \in S$. Then, $\mu_A(a) \ge \mu_A(a^2) = \min \{\mu_A(a), \mu_A(a)\} = \mu_A(a)$.

So,
$$\mu_A(a) = \mu_A(a^2)$$

And $\gamma_a(a) \leq \gamma_A(a^2) = \max\{\gamma_A(a), \gamma_A(a)\} = \gamma_A(a).$

Hence, $\gamma_A(a) = \gamma_A(a^2)$, it follows that $A(a) = A(a^2)$.

Recall that a semigroup is called left regular if for each element a of S, there exists an element x in S such that $a = xa^2$, [9].

Proposition 4.6:

Let S be left regular, then every intuitionistic fuzzy left ideal of S is intuitionistic fuzzy semiprime.

Proof:

Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy left ideal of S and let $a \in S$, then there exists an element x in S such that $a = xa^2$, then $\mu_A(a) = \mu_A(xa^2) \ge \mu_A(a^2)$ since S is left regular.

Also, we have $\gamma_A(a) = \gamma_A(xa^2) \le \gamma_A(a^2)$; that is A is fuzzy semiprime.

Proposition 4.7:

Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy ideal of S.If S is intra-regular, then $A = (\mu_A, \gamma_A)$ is intuitionistic fuzzy semiprime.

Proof:

Let $a \in S$. Then there exist $x, y \in S$ such that $a=x a^2 y$, thus $\mu_A(a) = \mu_A(xa^2y) \ge \mu_A(xa^2y) \ge \mu_A(a^2y) \ge \mu_A(a^2)$ and $\gamma_A(a) = \gamma_A(xa^2y) \le \gamma_A(a^2y) \le \gamma_A(a^2)$

Hence, $A = (\mu_A, \gamma_A)$ is intuitionistic fuzzy semiprime.

Definition 4.8[2]:

An intuitionistic fuzzy subsemigroup $A = (\mu_A, \gamma_A)$ of S is called an intuitionistic fuzzy interior ideal of S if

- 1. $\mu_A(xay) \ge \mu_A(a)$
- 2. $\gamma_A(xay) \le \gamma_A(a)$, for all x,y,a $\in S$.

Proposition 4.9:

Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy interior ideal of S.If S is an intraregular,then $A = (\mu_A, \gamma_A)$ is intuitionistic fuzzy semiprime.

Proof:

It follows by definition 4.4 and definition 4.8.

<u>REFRENCES :</u>

- [1] Zadeh.L.A.,(1965),"Fuzzy Sets", Information and Control,8:338-353.
- [2] Goguen J.A.,(1967),"L-Fuzzy Sets", Math. Anal. Appl., 18:145-174.
- [3] Atanassov K.T.,(1986),"Intuitionistic fuzzy sets",Fuzzy sets and Systems,20:87-96.
- [4] Lajos S.,(1961),"Generalized ideals in semigroup', Scta Sci.Math., 22:217-222.
- [5] Kuroki N.,(1982),"Fuzzy semiprime ideals in semigroups",Fuzzy sets and Systems,8:71-79.
- [6] Martines L. ,(1996), "Fuzzy modules over fuzzy rings in connection with Fuzzy ideal of Fuzzy ring ". J.Fuzzy Mathematics , 4:843-857.
- [7] Roh,E.H and Lee,J.G.(2006),"intutionstic Q-fuzy subalgebras of BCK/BCI-algebras",international Mathematical Forum, 24:1167-1174.
- [8] Lajos S.,(1997),"(1,2)-ideal characterizations of unions of groups", Kobe J.Math. 5:447-450.
- [9] Kuroki N.,(1981),N."On fuzzy ideals and fuzzy bi-ideals in semigroups", Fuzzy sets and Systems, 5:203-215.
- [10] Atanassov K.T.,(1994),"New operations defined over the Intuitionistic fuzzy sets", Fuzzy sets and Systems ,61:137-142.

Some types of fuzzy ideals in semigroups

ربيع هادي جاري اكرم برزان عطار

قسم الرياضيات- كلية التربية- جامعة ذي قار

الملخص

درسنا في هذا البحث مفهوم المثالي الضبابي في شبه الزمرة وأعطينا بعض الخواص وذكرنا بعض

أنواع المثاليات مثل (المنتظم وشبه الأولية والمثاليات من النوع(٢،١) و من النوع (٢،٢)) وأعطينا

بعض العلاقات بينهما.