University of Thi-Qar Journal Of Science (UTsci)

Website: http://jsci.utq.edu.iq

Email: utjsci@utq.edu.iq

Volume 6, Number 2, June 2017

Characterization of Covering Dimension

Nedaa Hasan Hajee

Department of Mathematics and Computer Application- College of Science - Al Muthanna University

Email: hnedaa56@yahoo.com

<u>Abstract</u>

The present study focus and define a new kind of covering dimension and show some relations with other concepts using the (N - open) sets in topological space. The current paper obtain some properties and characterization of this covering dimension.

Keywords: *N* – open , normal space, covering dimesion .

<u>1-Introduction:</u>

The dimension theory begin with "dimension function" which is a role d defined on the class of topological spaces such as d(X) is an integer or ∞ ,with the properties that d(X) = d(Y) if X and Y are homeomorphic and $d(R^n) = n$ for each positive integer n. The dimension functions take topological spaces to the set {-1,0,1,...}.The dimension functions *ind*,*Ind*,*dim* investigation by A.R. Pears 1975 [2].

We define a new type of covering dimension and clear some of relations to other concepts using the N-open sets in topological space and recall the definitions of (*dim*). Then we introduce the dimension functions, N-dim using N-open sets. Follows by studing some relation between them. some results relating these concepts are proved.

2 - N - OPEN SETS

Al Omari A. and Noorani M. in [1] introduce new class of set called N - open sets.

Prove that the family of all N – *open* establishes a topology. Moreover, they obtain a characterization and preserving theorems of compact spaces.

Definition 2.1[1]: A subset A of a space X is said to be N-open if for every $x \in A$, there exists an open subset $U_x \subseteq X$ containing x such that $U_x - A$ is a finite set. The complement of a N-open subset is said to be N-closed and denoted by \overline{A}^N .

The family of all N-open subsets of a space (X, τ) is denoted by τ^N .

Clearly every open is N – *open* but the converse is not true, see the following example.

Example2.2.: Let $X = \{a, b, c\}, \tau = \{\{a\}, X, \phi\}$. The

N-open sets are:

 $\phi, X, \{a\}, \{b\}, \{a, c\}, \{a, b\}, \{c\}, \{b, c\}$. Then $\{a, b\}$ is an N-open set, but it is not an open.

Theorem 2.3[1]: Let (X,τ) be a topological space, then (X,τ^N) is a topological space.

Corollary2.4[1]: Let (X,τ) be a topological space. Then The intersection of an open set and N-open set is N-open.

Proposition2.5[3]: Let X be a space $,Y \subseteq X$ if B is an N-open set in X, then $B \cap Y$ is an N-open in Y.

Proposition2.6[4]: Let X be a space , Y be an N-open set of X, if A is an N-open set in Y, then A is an N-open in X.

Definition2.7: A space X is called N – normal space if for every disjoint closed sets F_1, F_2 there exist disjoint N – opensets V_1, V_2 such that $F_1 \subseteq V_1, F_1 \subseteq V_1$.

Volume 6, Number 2, June 2017

Definition2.8: A space X is called N^* – *normal* space if for every disjoint N – *closed* sets F_1, F_2 there exist disjoint open sets V_1, V_2 such that $F_1 \subseteq V_1$, $F_2 \subseteq V_2$.

Remark2.9: It is clear that N^* -normal space is normal, and every normal space is N-normal space.

Example 2.10: This example shows that a N - normal space is not need to be normal in . Let $X = \{a, b, c, d, e\},$ $\tau = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}, \{a, b, d, e\}, \{d\}, \{a, d\}\}$. The N - opensets are (every sub sets of X). It is clear that X is N - normal space but is not normal. In Fact the closed sets $\{c\}, \{b, e\}$ cannot be separated by open sets in X.

Remark 2.11: Example 2.2 shows that a normal space is not N^* – normalin general. It is clear that X is normal space since there exist no disjoint closed sets. Hence it is N – normalsince every normal space is N – normalon the other hand , X is not N^* – normalsince there are no disjoint open sets which separate the N – closed sets {b}, {c}.

Proposition 2.12: A space X is N - normal space if for every closed set F in X and open set U such that $F \subseteq X$ there exists an N - open set W such that $F \subseteq W \subseteq \overline{W}^N \subseteq U$.

Proof: It is clear that F, U^c are disjoint closed set in X. Thus since X is N-normal space then there exist disjoint N-opensets W,V such that $F \subseteq W$, $U^c \subseteq V$ then $F \subseteq W \subseteq \overline{W}^N \subseteq \overline{V^c}^N = V^c \subseteq U$. Conversely, let F_1, F_2 be disjoint closed sets in X. Then F_2^c is open set, $F_1 \subseteq F_2^c$. Thus there exists an N-openset W such that $F_1 \subseteq W \subseteq \overline{W}^N \subseteq F_2^c$. Then $F_1 \subseteq W, F_2 \subseteq \overline{W}^{N^c}, W, \overline{W}^N$ are disjoint N-open sets. So that X is N-normal space.

By the same technique we can prove the following Proposition.

Proposition 2.13: A space X is N^* – *normal* space if and only if for every N – *closed* set F in X and N-open set U such that $F \subseteq U$, there exists an open set W such that $F \subseteq W \subseteq \overline{W}^N \subseteq U$.

Email: utjsci@utq.edu.iq

Theorem 2.14: Let X be a topological space. Then the following statements are equivalent:

(a) X is N^* – normal.

(b) Each point – finite N - open covering of X is shrinkable.

(c) Each finite N – *open* covering of X has locally finite closed refinement.

Proof:(a) \rightarrow (b) Let $\{G_{\lambda}\}_{\lambda \in A}$ be a point – finite N-open covering of N^* -normal space X and let \wedge be well – ordered . We shall construct a shrinkable of $\{G_{\lambda}\}_{\mu}$ by transfinite induction . Let μ be an element of Λ and suppose that for each $\lambda < \mu$. We have an open set U_{λ} such that $\overline{U}_{\lambda} \subset G_{\lambda}$ for each $\lambda < \mu$, $\bigcup_{\lambda \le \mu} U_{\lambda} \bigcup \bigcup_{\lambda \le \mu} G_{\lambda} = X$. Let x be a point in X . Then since $\{G_{\lambda}\}_{\lambda \in \Omega}$ is point finite , there exists a largest Σ , say, of \wedge such that $x \in G_{\Sigma}$. If $\Sigma \ge \mu$ then $x \in \bigcup_{\lambda > \mu} G_{\lambda}$, whilst if $\sum < \mu$ then $x \in \bigcup_{\lambda \leq \Sigma} U_{\lambda} \subset \bigcup_{\lambda < \mu} U_{\lambda}.$ Hence $\bigcup_{\lambda < \mu} U_{\lambda} \bigcup_{\lambda > \mu} G_{\lambda} = X. \text{ Thus } G_{\mu} \text{ contains}$ the complement of $\bigcup_{\lambda < \mu} U_{\lambda} \bigcup \bigcup_{\lambda < \mu} G_{\lambda}$ since X is N^* – normal, there exists an open set U_{μ} such that $X \setminus (\bigcup_{\lambda < \mu} U_{\lambda} \bigcup_{\lambda > \mu} G_{\lambda}) \subset U_{\mu} \subset \overline{U}_{\mu} \subset G_{\mu}.$ Thus $\overline{U}_{\mu} \subset G_{\mu}$ and $\bigcup_{\lambda < \mu} U_{\lambda} \cup \bigcup_{\lambda > \mu} G_{\lambda} = X$. The construction of a shrinking of $\{G_{\lambda}\}_{\lambda}$ is completed by transfinite induction. (b) \rightarrow (c) Let $\{G_{\alpha} : \alpha \in \land\}$ be a finite *N*-open covering of X, then $\{G_{\alpha} : \alpha \in \land\}$ is a point – finite open covering of X therefore, there exists $\{U_{\alpha} : \alpha \in \land\}$

an open family of covering of X, such that $\overline{U}_{\alpha} \subset G_{\alpha}$ for each $\alpha \in \wedge$. Therefore $\{\overline{U}_{\alpha} : \alpha \in \wedge\}$ is a locally finite closed refinement of $\{G_{\alpha} : \alpha \in \wedge\}$.

(c) \rightarrow (a) Let X be a space such that each finite N-open covering of X which has a locally finite closed refinement and let A, B be disjoint N-closed

University of Thi-Qar Journal Of Science (UTsci)

Website: http://jsci.utq.edu.iq

Email: utjsci@utq.edu.iq

Volume 6, Number 2, June 2017

sets of X. The covering $\{X \setminus A, X \setminus B\}$ of X has a locally finite closed refinement F. Let E be the union of the members of F disjoint from A and let G be the union of the members of F disjoint from B, then E and G are closed sets and $E \cup G = X$. Thus if $U = X \setminus E, W = X \setminus C$, then U, W are disjoint open sets $A \subseteq U$, $B \subseteq W$. Hence X is N^* – normalspace.

3- On N - Covering Dimension (N-dim):

Definition 3.1[2]: The order of a family $\{A_{\lambda}\}_{\lambda \in \Lambda}$ of subsets, not all empty, of some set is the largest integer *n* for which exists a subset μ of \wedge with n+1 elements such that $\bigcap_{\lambda \in \mu} A_{\lambda}$ is not empty, or is ∞ if there is no such largest integer. A family of empty subset has order -1.

Definition 3.2 [2]: Let X be a topological space, then $\dim X = -1$ if and only if $X = \phi$, and if *n* is a positive integer or 0 then we say that $\dim X \le n$ if and only if every finite open cover of X has an open refinement of order $\le n$ or is ∞ if there is no such integer. This suggests the following definition:

Definition 3.3: Let X be a topological space, then $N - \dim X = -1$ if and only if $X = \phi$, and if n is a positive integer or 0 then we say that $N - \dim X \le n$ if and only if every finite open cover of X has an N - open refinement of order $\le n$ or is ∞ if there is no such integer.

Remark 3.4: Since each open set is N-open, then it follows that N-dim $X \le dim X$.

Theorem 3.5: Let X be a topological space. If X has a base of sets which are both N-open and N-closed, then N-dim X=0. For a T_1 -space the converse is true.

Proof: Suppose X has a base of sets which are both N-open and N-closed. Let $\{U_i\}_{i=1}^k$ be a finite open covering of X. It has an N-open refinement W, if $W \in W$ then $W \subset U_i$ for some *i*. Let each W in W be associated with one of the sets U_i containing it and let V_i be the union of those members of W thus associated with U_i . Thus Vi is N-open set, and hence $\{Vi\}_{i=1}^k$ forms a disjoint N-open refinement of $\{U_i\}_{i=1}^k$. Then

 $N-\dim X=0$. Conversely suppose X is a T_1 -space such that $N-\dim X=0$. Let $x \in X$ and G be an open set in X such that $x \in G$. Then $\{x\}$ is closed and $\{G, X - \{x\}\}$ is a finite of open cover of X. So it has an N-open refinement of order 0. Let C_1 be the union of N-open sets in G and C_2 be the union of the N-open sets in $X-\{x\}$. Then $C_1 \cap C_2 = \phi$, $C_1 \cup C_2 = X$ and C_1, C_2 are N-open, and N-closed set in X. Thus $x \in C_2^c = C_1 \subseteq G$ and C_1 is N-open and N-closed set in X and hence X has a base of sets which are both N-open and N-closedsets.

It is known that if X is a topological space with dim X = 0 then X is normal.

Theorem3.6:Let X be a topological space. If

N - dim X = 0, then X is a N - normal.

Proof : Let C_1, C_2 be disjoint closed sets in X, then $\{X \setminus C_1, X \setminus C_2\}$ is a finite open covering of X. Since N - dim X = 0 then it has N - open refinement of order 0 say C. Let H be the union of it such that N - open disjoint from C_1 and let G be the union of it such that N - open disjoint from C_2 . Then H, G are N - open sets , $H \cup G = X$, $H \cap G = \phi$ so that $H \subseteq X \setminus C_1, G \subseteq X \setminus C_2$. Thus $C_1 \subseteq H^c = G$ and $C_2 \subseteq G^c = H$ and since $H \cap G = \phi$, then X is N - normal space.

Remark 3.7: Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$. In this example show that $\dim X = N - \dim X = 0$. Since X is the open cover of X and it is the only open refinement of it , then $\dim X = 0$ and since $N - \dim X \le \dim X, X \ne \phi$, then

 $\dim X = N - \dim X = 0.$

The following example shows that dim X = N - dim X = 1.

Example 3.8:Let $X = \{a, b, c, d\}$ and let a base for a topology of X consisting of the sets $\{a\}, \{d\}, \{b, d\}$ and $\{c, d\}$. Then $\{\{a\}, \{b, d\}, \{c, d\}\}$ is an open and N - open refinement for every open covering of X. So that $dim X \le 1$ and $N - dim X \le 1$. But X is non empty, not normal and not $N - normal[since \{a, c\}, \{b\}]$ are

University of Thi-Qar Journal Of Science (UTsci)

Website: http://jsci.utq.edu.iq

Volume 6, Number 2, June 2017

disjoint closed sets but there is no disjoint open or *N*-open sets G, H such that $\{a, c\} \subseteq H, \{b\} \subseteq G$ so that $\dim X > 0$, N - dim X > 0Hence dim X = N - dim X = 1.The following example shows that $dim X \neq N - dim X$ in general: Example3.9: Suppose $X_m = \left\{ (x, y) \in \mathbb{R}^2 : y = mx, m \in \mathbb{Z}^+, y > 0, x > 0 \right\}, \text{ and}$ let $X = \{0\} \bigcup (\bigcup_{m=1}^{k} X_m)$. Let a_m be the point of intersection of the line y = mx with the circumference of the unit open disc D with center 0, $a_m \notin D$. Denote the topology of X_m by T_m , take a base for a point $x \in X_m$, $x \neq a_m$ to be the family of open intervals containing x but not a_m , and the base for a_m is X_m . Let T be the topology on X generated by $\bigcup_{m=1}^{\infty} T_m$ and the base at 0 family D. It is clear that X is not normal space, since $\{0\}, D^c$ are disjoint closed sets but there exist no disjoint open sets separate them . the finite open cover of X are X or $\{X_m : m = 1, \dots, k\} \cup D$, and hence $\{X_m: m=1,\ldots,k\} \cup D$ is a finite open refinement for every open cover of X which is of order ≤ 1 and since X is not normal, then dim X > 0 and hence dim X=1.Now let $\{G_{\lambda}\}$ be a finite an open cover of X, if one member $G_{\lambda} = X$ then $\{X\}$ is a finite refinement of N - open sets and N - dim X = 0, otherwise at last one $G_{\lambda} \ni D$ call it $G_{\lambda} \ni D$. Moreover for each m, at least one G_{λ} say $G_{\lambda m} \ni X_m$ because the only open set containing a_m is X_m . There is no loss of generality if we suppose that G_{λ} is an open interval $\lambda \neq \lambda \circ, \lambda_1 \dots \lambda_m, \dots, \lambda_k$ each $X_m \setminus \{a_m\}$ is a when collection of open intervals: $D \bigcup \{ [a_1, \infty), ..., [a_k, \infty) \}$ is an *N*-open refinement, since each $[a_i,\infty)$ is N-open set for each *i* and since this N-openrefinement are disjoint, then N - dim X = 0. Thus $\dim X \neq N - \dim X.$

Email: utjsci@utq.edu.iq

Theorem 3.10: If A is both open and closed subset of X then $N - \dim A \le N - \dim X$.

Proof : Suppose that $N - \dim X \le n$. Let $\{U_1, \dots, U_k\}$ be an open covering of A. Then for each i, $U_i = A \cap V_i$ where V_i is an open set in X. The finite open covering $\{V_1, \dots, V_k, X \setminus A\}$ of X has an N - open refinement W of order $\le n$. Let $V = \{W \cap A \setminus W \in W\}$. Then V is an N - open refinement of $\{U_1, \dots, U_k\}$ of order $\le n$. Thus $N - dim A \le n$.

Theorem 3.11[2]: If X is *normal* space, the following statements are equivalents :

(a) dim $X \le n$

(b) For each family of closed sets $\{C_1,...,C_{n+1}\}$ and each family of open set $\{U_1,...,U_{n+1}\}$ such that $C_i \subset U_i$ there exists a family $\{V_1,...,V_{n+1}\}$ of open sets such that $C_i \subset V_i \subset \overline{V_i} \subset U_i$ for each *i* and $\bigcap_{i=1}^{n+1} b(V_i) = \phi$.

(c) for each family of closed sets $\{C_1,...,C_k\}$ and each open family of open sets $\{U_1,...,U_k\}$ such that each $C_i \subset U_i$ there exists families $\{V_1,...,V_k\}$ and $\{W_1,...,W_k\}$ of open sets such that

Volume 6, Number 2, June 2017

 $C_i \subset V_i \subset \overline{V_i} \subset W_i \subset U_i$ for each *i* and the order of the family $\{\overline{W}_1/V_1,...,\overline{W}_k/V_k\}$ does not exceed n-1.

Theorem 3.12: If X is N^* – normal space, the following statements are equivalents :

(a) $N - dim X \le n$

(b) For each family of closed sets $\{C_1, ..., C_{n+1}\}$ and each family of open set $\{U_1, ..., U_{n+1}\}$ such that $C_i \subset U_i$ there exists a family $\{V_1, ..., V_{n+1}\}$ of open sets such that $C_i \subset V_i \subset \overline{V_i} \subset U_i$ for each *i* and $\bigcap_{i=1}^{n+1} b(V_i) = \phi$.

(c) for each family of closed sets $\{C_1,...,C_k\}$ and each open family of open sets $\{U_1,...,U_k\}$ such that each $C_i \subset U_i$ there exists families $\{V_1,...,V_k\}$ and $\{W_1,...,W_k\}$ of open sets such that $C_i \subset V_i \subset \overline{V_i} \subset W_i \subset U_i$ for each *i* and the order of the family $\{\overline{W_1}/V_1,...,\overline{W_k}/V_k\}$ does not exceed n-1.

Proof:(a) \rightarrow (b) Suppose that $N - \dim X \le n$. Let C_1, \dots, C_{n+1} be closed sets and let U_1, \dots, U_{n+1} be open sets such that each $C_i \subset U_i$. Since $N - dim X \le n$, the open covering of X consisting of sets of the form $\{H_1, \dots, H_{n+1}\}$, where $H_i = U_i$ or $H_i = X \setminus C_i$ for each *i*, has a finite N-open refinement $\{W_1,...,W_q\}$ of order not exceeding n. Since X is N^* – normal, there is a closed covering $\{K_1, \dots, K_a\}$ such that each $K_r \subset W_r$ for each r = 1, ..., q. Let N_r denote the set of integers *i* such that $C_i \cap W_r \neq \phi$ for r = 1, ..., q, we can find open sets V_{ir} for *i* in N_r such that $K_r \subset V_{ir} \subset \overline{V}_{ir} \subset W_r$ and $\overline{V}_{ir} \subset V_{ir}$ if i < j. Now for each i=1,...,n+1, let $V_i = \bigcup \{V_{ir} \setminus i \in N_r\}$. Then V_i is open, and $C_i \subset V_i$, for if $x \in C_i$ and $x \in K_r$, then $i \in N_r$ so that, $x \in V_{ir} \subset V_i$. Furthermore if $i \in N_r$ so that $C_i \cap W_r \neq \phi$, then W_r is not contained in $X \setminus C_i$ so that $W_r \subset U_i$. Thus if $i \in N_r$, then $V_{ir} \subset U_i$ so that , since $\overline{V}_i = \bigcup \{ \overline{V}_{ir} \setminus i \in N_r \}$, it follows that $\overline{V}_i \subset U_i$. Finally suppose that $x \in \bigcap_{i=1}^{n+1} b(V_i)$. Since $b(V_i) \subset \bigcup \left\{ b(V_{ir}) \setminus i \in N_r \right\}$, it follows that for each ithere exists r_i such that $x \in b(V_{i_i})$. And if $i \neq j$, then $r_i \neq r_j$ for if $r_i = r_j = r$ then $x \in \overline{V}_{ir}$ and $x \in \overline{V}_{jr}$ but $x \notin \overline{V}_{ir}$ and $x \notin \overline{V}_{jr}$, which is contradiction, since either or $\overline{V}_{jr} \subset V_{ir}$. For each i, $x \notin V_{ir}$ so that $x \notin K_{ri}$. But $\{K_r\}$ is a covering of X and so there exists r_o different from each of the r_i such that $x \in K_{ro} \subset W_{ro}$. Since $x \in \overline{V}_{ir_i}$, it follows that $x \in W_{ri}$ for i = 1, ..., n+1, so that $x \in \bigcap_{i=0}^{n+1} W_{ri}$. Since the order of $\{W_r\}$ does not exceed n. Hence $\bigcap_{i=1}^{n+1} b(V_i) = \phi$.

Email: utjsci@utq.edu.iq

(b) \rightarrow **(c)** Since each N^* – *normal* space is normal, then (b) \rightarrow (c) by Proposition 3.12.

(c) \rightarrow (a) Since each N^* – normal space is normal. then we get $N - \dim X \le n$ by Proposition 3.12. And since $N - \dim X \le \dim X$, hence $N - \dim X \le n$.

Theorem (Uryshon's Lemma) 3.13[5]:For every pair A, B of disjoint closed subsets of normal space X there exist a continuous function $f: X \to I$ such that f(x)=0 for $x \in A$ and f(x)=1 for $x \in B$, where I = [0,1].

Proposition 3.14[2]: If X is *normal* space, the following statements about X are quivalents:

(a) dim $X \leq n$.

(b) for each family of n+1 pairs of closed sets $\{(E_1, F_1), \dots, (E_{n+1}, F_{n+1})\}$ where $E_i \cap F_i = \phi$ for each i, there exist n+1 continuous function $f_i: X \to [-1,1], i=1, \dots, n+1$ such that for each i, $f_i(x) = 1$ if $x \in E_i$, $f_i(x) = -1$ if $x \in F_i$ and $\bigcap_{i=1}^{n+1} f_i^{-1}(0) = \phi$.

(c) for each family of n+1 pairs of closed sets $\{(E_1, F_1), \dots, (E_{n+1}, F_{n+1})\}$ where $E_i \cap F_i = \phi$ for each i, there exists a family $\{C_1, \dots, C_{n+1}\}$ of closed sets such that each C_i separated E_i and F_i in and $\bigcap_{i=1}^{n+1} C_i = \phi$.

Theorem 3.15: If X is $N^* - normal$ space, the following statements about X are equivalents: (a) $N - \dim X \le n$.

(b) for each family of n+1 pairs of closed sets $\{(E_1, F_1), \dots, (E_{n+1}, F_{n+1})\}$ where $E_i \cap F_i = \phi$ for each i,

Email: utjsci@utq.edu.iq

Volume 6, Number 2, June 2017

there exist n+1 continuous function $f_i: X \to [-1,1], i = 1, \dots n+1$ such that for each i, $f_i(x) = 1$ if $x \in E_i$, $f_i(x) = -1$ if $x \in F_i$ and $\bigcap_{i=1}^{n+1} f_i^{-1}(0) = \phi$.

(c) for each family of n+1 pairs of closed sets { $(E_1, F_1), ..., (E_{n+1}, F_{n+1})$ } where $E_i \cap F_i = \phi$ for each i, there exists a family { $C_1, ..., C_{n+1}$ } of closed sets such that each C_i separated E_i and F_i in and $\bigcap_{i=1}^{n+1} C_i = \phi$.

Proof :(a) \rightarrow (b) If X is N^* – normal space such that $N - \dim X \le n$, and let $\{(E_1, F_1), \dots, (E_{n+1}, F_{n+1})\}$ be a family of pairs of disjoint closed sets. By theorem 2.13 there exist open sets V_1, \dots, V_{n+1} and W_1, \dots, W_{n+1} such that $E_i \subset V_i \subset \overline{V}_i \subset W_i \subset X \setminus F_i \text{ and } \bigcap_{i=1}^{n+1} (\overline{W}_i / V_i) = \phi$.By Urysohn's Lemma, for each i there exists a continuous function $f_i: X \to [-1,1]$ such that $f_i(x) = 1$ if $x \in V_i$ $f_i(x) = -1$ if $x \notin W_i$. We note that and $f_i^{-1}(0) \subset W_i \setminus \overline{V_i} \subset \overline{W_i} \setminus V_i$... Thus we have n+1continuous functions $f_i: X \rightarrow [-1,1]$ such that $f_i(x) = 1$ if $x \in E_i$, $f_i(x) = -1$ if $x \in F_i$ and $\bigcap_{i=1}^{n+1} f_i^{-1}(0) = \phi$.

(b) \rightarrow (c) Since each N^* -normal is normal, then (b) \rightarrow (c)by Proposition 3.14.

(c) \rightarrow (a)Since each N^* – normal space is normal, then we get $\dim X \le n$ by Proposition 3.14. And since $N - \dim X \le \dim X$. Hence $N - \dim X \le n$.

Lemma 3.16[4]: If X is a normal , let A be a closed sub space of X and let the continuous function $f_0, f_1: A \to S^n$ be uniformly homotopic. If f_0 has an extension $g_0: X \to S^n$, then f_1 has an extension $g_1: X \to S^n$.

Theorem 3.17[4]: If X is a normal, then $\dim X \le n$ iff for each closed set A of X, each continuous function $f: A \to S^n$ has an extension $g: X \to S^n$.

Theorem3.18: If X is N^* -normal, then $N-dim X \le n$ iff for each closed set A of X, each continuous function $f: A \to S^n$ has an extension $g: X \to S^n$.

Proof: Let X be a $N^* - normal$ space such that $N - dim X \le n$, let A be a closed subspace of X and

let $f: A \rightarrow S^n$ be given continuous function. We regard S^n as the boundary of the cube Q^{n+1} in R^{n+1} $Q^{n+1} = \{t \in \mathbb{R}^{n+1} \setminus ||t|| \le 1 \text{ for } i = 1, ..., n+1 \}$. If .where $f(x) = (f_1(x), \dots, f_{n+1}(x))$ and let for $x \in A$ $i = 1, \dots, n+1$ let $E_i = \{x \in A \setminus f_i(x) = 1\}$ $F_i = \{x \in A \setminus f_i(x) = -1\}$. Then E_i, F_i are disjoint sets, closed in A and hence in X , and $A = \bigcup_{i=1}^{n+1} (E_i \cup F_i)$. By Theorem 3.15 there exist continuous function $\eta_i: X \rightarrow [-1,1]$, $i=1,\ldots,n+1$, such that $\eta_i(x)=1$ if $x \in E_i$, $n_i(x) = -1$ if $x \in F_i$ and $\bigcap_{i=1}^{n+1} \eta_i^{-1}(0) = \phi$. Let $\eta: X \to Q^{n+1}$ by given by $\eta(x) = (\eta_1(x), \dots, \eta_{n+1}(x))$. If $x \in A$, then either $x \in E_i$ for some *i* so that $\eta_i(x) = f_i(x) = 1$ or , $x \in F_i$ for some j, $\eta_i(x) = f_i(x) = -1$. It follows that we can define continuous functions $\Psi: A \to S^n$ and $h: A \times I \to S^n$ by putting $\Psi(x) = \eta(x)$ if $x \in A$ and $h(x,t) = (1-t)\Psi(x) + tf(x)$ if $(x,t) \in A \times I$. If $x \in A$ and $s, t \in I$, then $\|h(x,s)-h(x,t)\| =$ $|s-t| \|\Psi(x) - f(x)\|$. Since $\|\Psi(x) - f(x)\| \le 2\sqrt{n-1}$ if $x \in A$, it follows that h is a uniform homotopy between Ψ and f. Since $\bigcap_{i=1}^{n+1} \eta_i^{-1}(0) = \phi$, it follows that $\eta(x) \subset Q^{n+1} \setminus \{0\}$ so that Ψ has an extension to X since S^n is a retract of $Q^{n+1} \setminus \{0\}$. It now follows from lemma 3.16 that f has an extension $g: X \to S^n$. Conversely since each $N^* - normal$ space is normal. Then $dim X \leq n$ from Theorem 3.17 since $N - \dim X \le \dim X$. Hence $N - \dim X \le n$.

Proposition 3.19[2]: If X is a normal, let A be a closed sub space of X and let $f: A \to S^n$ be a continuous function. Then there exist an open set U and a continuous $g: U \to S^n$ such that $A \subset U$ and $g \mid A = f$.

Proposition 3.20[2]: Let A be a closed set of normal space X such that $\dim C \le n$ for each closed C of X which is disjoint from A. Then each continuous function $f: A \to S^n$ has an extension $g: X \to S^n$

Volume 6, Number 2, June 2017

Then each continuous function $f: A \to S^n$ has an extension $g: X \to S^n$.

Theorem 3.21:Let A be a closed set of a N^* – normal space X such that $N - \dim C \le n$ for each closed C of X which is disjoint from A. Then each continuous function $f: A \to S^n$ has an extension $g: X \to S^n$.

Proof : Since X is $N^* - normal$ by proposition **3.19** there exists an open set U such that $A \subset U$ and a mapping $\eta: U \to S^n$ which extends f, and there exists an open set V such that $A \subseteq V \subseteq \overline{V} \subseteq U$. The set $\overline{V} \setminus V$ is closed in $X \setminus V$ and $N - dim(X \setminus V) \le n$ since $X \setminus V$ is a closed set of X disjoint form A. Hence by Proposition **2.20** and theorem **3.18** there exists a continuous function $\Psi: X \setminus V \to S^n$ such that $\Psi \mid \overline{V} \setminus V = \eta \mid \overline{V} \setminus V$. Let $g: X \to S^n$ be define as follows :

$$g(x) = \begin{cases} \eta(x) & x \in \overline{V} \\ \Psi(x) & x \in X \setminus V \end{cases}$$

The definition is meaningful and the continuous function g is the required extension of f.

Theorem 3.22:Let X be a N^* – normal space and let A be closed of X such that $N - \dim A \le n$ if B is a closed set of X and $\eta: B \to S^n$ is continuous, then there exist an open set V such that $B \subset V$ and a continuous function $\Psi: A \cup \overline{V} \to S^n$ such that $\Psi|B = \eta$

Proof: By proposition **3.19** there exists an open set U such that $B \subset U$ and a continuous function $g: U \to S^n$ such that $g| B = \eta$. There exist an open set V such that $B \subseteq V \subseteq \overline{V} \subseteq U$. If \overline{V} does not meet A, then let $\Psi: A \cup \overline{V} \to S^n$ be a mapping such that $\Psi| A$ is a constant and $\Psi| \overline{A} = g| \overline{V}$. If \overline{V} meet A, then $g| A \cap \overline{V}$ has an extension $h: A \to S^n$ since $N - \dim A \le n$. Let $\Psi: A \cup \overline{V} \to S^n$ be the unique mapping such that $\Psi| A = h$ and $\Psi| \overline{V} = g| \overline{V}$. In both cases Ψ is the required extension.

Theorem 3.23: Let *A* be a closed set of N^* – *normal* space *X*. If $N - \dim A \le n$ and if $N - \dim C \le n$ for each closed *C* of *X* which does not meet *A*, then $\dim X \le n$.

Proof: Let *B* be a closed set of *X* and let $f: B \to S^n$ be a continuous function. It follows from Theorem **3.22** that *f* has an extension $g: A \cup B \to S^n$. By hypothesis if *C* is a closed set of *X* disjoint from $A \cup B$ then $N - \dim C \le n$, so that by Theorem **3.21**, *g* has an extension $h: X \to S^n$. Then *h* is an extension of *f*. Thus $\dim X \le n$ by Theorem **3.17**

Email: utjsci@utq.edu.iq

Theorem3.24: Let X be a $N^* - normal$ space and has a countable cover $\{A_i\}_{i=1}^{\infty}$ where each A_i is closed and $N - \dim A_i \le n$ for each i, then $N - \dim X \le n$.

Proof: Let *C* be a closed set of *X* and let $f: C \to S^n$ be a continuous function .By Theorem **3.22** those is an open V_1 such that $C \subset V_1$ and there is an extension $h_1: \overline{V_1} \cup A_1 \to S^n$ of *f* .Next there is an open set $V_2 \supset \overline{V_1} \cup A_1$ and there is a continuous function $h_2: \overline{V_2} \cup A_2 \to S^n$ extending h_1 (also *f*). Repeating this procedure we get an extension h_i of h_{i-1} , $h_i: \overline{V_i} \cup A_i \to S^n$.Putting $g_i = h_i |_{V_i}$ for each *i*, then we get a continuous function $g_1: V_1 \to S^n, g_2: V_2 \to S^n$,... such that $g_i = g_j |_{V_i}$ for every i < j and g_j has an extension over *X* (because A_i is a cover of *X*). So there is a function $g: X \to S^n$ such that $g_i = g |_{V_i}$ for each *i* this is continuous because each V_i is open . Hence *g* extends *f* then $N - \dim X \le n$ by Theorem **3.18**.

<u>References</u>:

- Al. Omari. A. and Noorani. S. Md. "New characterization of comoact space" proceeding of the 5th Asian Mathematical conference, Malaysia ,2009, pp.53-60.
- [2] A. P. Pears, "On Dimension Theory of General Spaces" Cambridge University press, 1975
- [3] Majhool, Fatima and Hamza, Sattar "On N-proper Action" M.Sc. Thesis , Al- Qadisiyah University, College of computer science and Mathematics, 2011.
- [4] N. Bourbaki, Elements of Mathematics, "General Topology", Springer
 - Verlog, Berlin, Heidelbery, Paris New-York, London, Tokyo, 2nd Edition (1989).

University of Thi-Qar Journal Of Science (UTsci) ci.utq.edu.iq Email: utjsci@utq.edu.iq

Website: http://jsci.utq.edu.iq

Volume 6, Number 2, June 2017

[5] R. Engelking, "General topology ", Berlin, Heldermann (1989).