Superparamagnetism Phenomenon for a Mixed Spin Ferrimagnetic Binary System

Aqeel Raad Ghafele and Hadey K. Mohamad

1 Physics Department, College of Science, Al Muthanna University, Samawah, Iraq.
2 hadey.mohamad@mu.edu.iq.
3 a Corresponding author: sci.akeel@mu.edu.iq.

Received: 2024-02-17, Revised: 2024-03-05, Accepted: 2024-03-08, Published: 2024-06-01

Abstract— A decorated ferrimagnetic mixed triangular system was studied using the molecular mean-field approximation. The outcomes of the investigation were examined using the Blume-Capel Ising model. The study paper investigates the influence of crystal and external magnetic fields on ferrimagnetic devices decorated with mixed spin-2 and spin-7/2 of a triangular lattice. It is noteworthy that spin-2 ions are located at the nodal points, whereas six additional spin-7/2 ions surround the proposed lattice. Altering the exchange interactions through the specific crystal and external magnetic fields induces superparamagnetic behaviours. New characteristics reveal that mixed spin triangular decorated ferrimagnets exhibit superparamagnetic behaviour at $D_2 / |J_2| = 2.5$, with $J_1 = -0.5$ and $J_2 = -1.0$ in the range $(15 \leq K_B T / |J| \leq 18)$. It is important to note that the total magnetization changes with the external magnetic field and affects the superparamagnetism phenomenon of a decorated mixed spin ferrimagnets when $D_2 / |J_2| = 8$, and $D_0 / |J_2| = 11$. $J_1 = -0.5$ and $J_2 = 1$, for $K_B T / |J| = 2.5, 3, 3.5, \text{ and } 4 K_B$ respectively.

Keywords—Decorated ferrimagnets, triangular lattice, Nodal and decorating anisotropies, superparamagnetic behaviour.

I. INTRODUCTION

Recently, ferrimagnetic materials have been the most magnetically important materials in various applications. The Ising model with mixed magnetic spins has become increasingly significant in recent years. The Ising models and their modifications have been widely regarded as crucial topics in statistical mechanics. They are characterized by the magnetization’s instability caused by thermal agitation, leading to superparamagnetism [1,2]. Researchers have investigated these models' magnetic properties using methods such as mean-field theory, practical field theory, Monte Carlo simulation, etc. [3 V. Stubna and M. Jascur [4] used a generalized decoration iteration transformation to investigate a mixed spin-1/2 and spin-3/2 Ising model on a decorated square lattice the ground state and finite temperature phase boundaries are determined by finding a phases that correspond to the system's minimal internal or free energy. The researchers employed the mean-field approximation method to analyze the properties. M. Kerouac and Bouhraa [5] Monte Carlo simulations examined the critical behavior and magnetic properties of a decorated Ising film on a cubic lattice framework. The system recognized double reentrants and one or two compensating points. R. Masrur et al. [6]. Conducted Monte Carlo simulations to model the magnetic characteristics of Ising spins with values of 5/2 and 3/2 on square and triangular lattices with additional decorations. The researchers determined the critical temperature at which the two-dimensional square and triangular lattices transformed. The authors investigated magnetization using exchange connections and crystal fields. Two-dimensional decorated square and triangle lattices monitored saturation magnetization and magnetic coercive field. M. Karmoua and N. De La Espriella [7] investigated a square lattice ferrimagnetic Ising system's critical point, first-order phase transition, and spin compensation behaviour. The system consisted of alternating spins of S-3/2 and S-5/2. The study employed Monte Carlo simulations and mean field theory. A twofold first-order phase transition was found to be temperature-dependent. Hadey K. Mohamad [8] used mean field theory to study a two-sublattice-adorned Blume Capel and found remarkable long-range order behaviour by altering magnetocrystalline anisotropies at both sites. Using a straightforward hydrothermal method, they manufactured superparamagnetic nanocomposites of MoS$_2$ nanosheets coated with magnetic Fe$_3$O$_4$ nanoparticles [10]. A. Jabar and R. Masrour [9] studied the phase diagrams of Ising models with spin-5/2 and spin-2 on a decorated square lattice. The study's main aim was to assess the magnetic characteristics of the ground state. The authors emphasized the significance of superparamagnetic systems. This research will study a Blume-Capel Ising model with mixed-spin ferrimagnetic properties using a developed mean field approximation (MMFA). We analyze the decorated triangular lattice containing N atoms. The lattices represent a mixed magnetic system comprising two sublattices, A and B, with magnetic spins $S_A = 2$ and $S_B = 7/2$, respectively. The analysis of the occurrence of superparamagnetism in the proposed system is illustrated in Fig.1. We investigate the correlation between the total magnetisation and the atoms' external and crystal magnetic fields to achieve this. The work is organized as follows: in section 2, we offer the basic framework of the relevant theory, giving the Hamiltonian operator of a decorated triangular lattice. In Section 3, we present the results and discussions. Finally, the conclusion is presented in Section 4.
II. FORMALISM

The proposed ferrimagnetic system consists of a decorated triangular lattice consisting of a mixture of two sublattices, A and B, with spin values of (2,7/2). As depicted in Fig. (1), the Hamiltonian expresses the interactions between nearest neighbors, an external magnetic field, and the crystal field in the two-dimensional decorated triangular lattice.

\[H = -J_1 \sum_{i,j} S_i^A S_j^B - J_2 \sum_{i,j} S_i^B S_j^B - D_A \sum_i (S_i^A)^2 - D_B \sum_j (S_j^B)^2 - H (\sum_i S_i^A + \sum_j S_j^B). \]

(1)

Where \(H \) is a Hamiltonian measured by a Joule unit. \(J_1 \) is the nearest neighbor exchange parameter between magnetic atoms across the nodal and decorating ones. \(J_2 \) is the exchange interaction of the decorating atoms. \(S_i^A \) and \(S_j^B \) are the spins of atoms at sites i and j, respectively. \(D_A \) and \(D_B \) are single-ion anisotropies on A and B sites in Joule. Whereas H is the magnetic field in (Amp/m) unit. Spin \(S_i^A \) inhabited sublattice A with values of \((\pm 2, \pm 1, 0)\), while \(S_j^B \) occupied the sublattice in the spin, which have the values of \((\pm 7/2, \pm 5/2, \pm 3/2, \pm 1/2)\) are present in both networks.

The Hamiltonian expresses Blume-Capel Ising decorated lattices in the absence of an external magnetic field [11],

\[H = -J_1 \sum_{i,j} S_i^A S_j^B - J_2 \sum_{i,j} S_i^B S_j^B - D_A \sum_i (S_i^A)^2 - D_B \sum_j (S_j^B)^2. \]

(2)

So, one obtains

\[H_s = -J_1 \sum_{i,j} S_i^A S_j^B - D_A \sum_i (S_i^A)^2. \]

(3)

Using the Maxwell-Boltzmann distribution.

\[m_s = \langle S_i^A \rangle = \frac{\Sigma S_i^A e^{-\beta H_s}}{\Sigma e^{-\beta H_s}}, \]

(4)

and substituting Eq. (3) into (4), yields

\[m_s = \frac{\langle S_i^A \rangle}{\langle S_i^B \rangle} = \frac{\sum_{i,j} S_i^A e^{-\beta (-J_1 S_i^A S_j^B - D_A S_i^A)}}{\sum_{i,j} S_j^B e^{-\beta (-J_2 S_i^B S_j^B - D_B S_j^B)}}. \]

(5)

Where \(S_i \) takes values \((\pm 2, \pm 1, 0)\) and assuming \(\beta z J_1 = t_1 \), one obtains

\[m_s = \frac{2 e^{2z_1 m_B + 4z} + 2 e^{2z_1 m_B + 4z} + 2 e^{2z_1 m_B + 4z} + e^{2z_1 m_B + 4z} + e^{2z_1 m_B + 4z} + e^{2z_1 m_B + 4z}}{e^{2z_1 m_B + 4z} + 2 e^{2z_1 m_B + 4z} + 2 e^{2z_1 m_B + 4z} + e^{2z_1 m_B + 4z} + e^{2z_1 m_B + 4z} + e^{2z_1 m_B + 4z}}. \]

(6)

By using the identities \(e^x - e^{-x} = 2 \sinh x \) and \(e^x + e^{-x} = 2 \cosh x \), Eq. (6) has the formula

\[m_s = \frac{2 e^{2z_1 m_B} + e^{-3z} + e^{3z} + e^{-3z} + e^{3z} + e^{-3z}}{e^{2z_1 m_B} + e^{-3z} + e^{3z} + e^{-3z} + e^{3z} + e^{-3z}}. \]

(7)

and,

\[H = -J_1 \sum_{i,j} S_i^A S_j^B - J_2 \sum_{i,j} S_i^B S_j^B - D_B \sum_j (S_j^B)^2. \]

(8)

So,

\[m_B = \langle S_i^B \rangle = \frac{\sum_{i,j} S_i^B e^{-\beta H}}{\sum_{i,j} e^{-\beta H}}. \]

(9)

And substituting Eq. (8) into (9), it gives,

\[m_B = \frac{\sum_{i,j} S_i^B e^{-\beta [-J_1 S_i^A S_j^B - J_2 S_i^B S_j^B - D_B S_j^B]}}{\sum_{i,j} e^{-\beta [-J_1 S_i^A S_j^B - J_2 S_i^B S_j^B - D_B S_j^B]}}. \]

(10)

Where \(S_i \) takes values \((\pm 7/2, \pm 5/2, \pm 3/2, \pm 1/2)\) and assuming \(\beta z J_1 = t_1 \) and \(\beta z J_2 = t_2 \), the Eq (10) is written as

\[m_B = \frac{e^{2z_1 m_A} + e^{2z_1 m_A}}{e^{2z_1 m_A} + e^{2z_1 m_A}}. \]

(11)

Hence, Eq. (11) becomes

\[m_B = \frac{1}{2} \sinh \left(\frac{2z_1 m_A + 2z_2 m_B}{2} \right) \sinh \left(\frac{2z_1 m_A + 2z_2 m_B}{2} \right) \]

(12)
According to Equation (2), the system can achieve the most precise estimation of the current model by using a specified Hamiltonian. We employ a variational technique that calculates free energy based on the Bogoliubov inequality. By utilizing this approach, we can acquire the most precise estimation of the present model based on a particular Hamiltonian [12].

\[G \leq \Phi = G_0 + \langle \mathcal{H} \cdot \mathcal{H}_0 \rangle_0. \] (13)

Where \(G \) is the free energy of \(\mathcal{H} \) given by (Eq 2), \(G_0 \) is the free energy of a trial Hamiltonian \(\mathcal{H}_0 \) depending on variational parameters, and \(\langle \ldots \rangle_0 \) denotes a thermal average over the ensemble defined by \(\mathcal{H}_0 \). In this work, we consider one of the simplest possible choices of \(\mathcal{H}_0 \), namely,

\[\mathcal{H}_0 = -\sum [\lambda_1 S_1^A + D_A (s_1^A)^2] - \sum [\lambda_2 S_1^B + D_B (s_1^B)^2]. \] (14)

Where \(S_1^A \) takes the values of spins for nodal atoms and \(S_1^B \) with spin of atomic decorating. Whereas \(\lambda_1, \lambda_2, D_A \) and \(D_B \) are the variational parameters related to the different spins and the anisotropies of the two sublattices proposed (i.e., the nodal and decorating anisotropies), respectively. Researchers employ the partition function to articulate the connections between thermal properties, such as free energy and magnetization. The experimental Hamiltonian corresponds to the partition function [11], which is

\[Z_0 = \sum \exp^{-\beta \mathcal{H}_0}. \] (15)

Now, let us substitute Eq. (14) into Eq. (15) to obtain the partition function for the proposed model.

\[Z_0 = \sum_{\pm 2} e^{-\beta \left[-\lambda_1 S_1^A + D_A (s_1^A)^2 - \lambda_2 S_1^B + D_B (s_1^B)^2 \right]}, \]

\[\sum_{\pm 2} e^{-\beta \left[-\lambda_2 S_1^B + D_B (s_1^B)^2 \right]}, \] (16)

\[Z_0 = \left\{ e^{2\beta \lambda_1 + 4\beta D_A} + e^{-2\beta \lambda_1 + 4\beta D_A} + e^{\beta \lambda_1 + \beta D_A} + e^{-\beta \lambda_1 + \beta D_A} + 1 \right\} \left\{ e^{\frac{7}{2} \beta \lambda_1 + 49\beta D_B} + e^{-\frac{7}{2} \beta \lambda_1 + 49\beta D_B} + e^{5 \beta \lambda_1 + 25\beta D_B} + e^{-5 \beta \lambda_1 + 25\beta D_B} + e^{-\frac{7}{2} \beta \lambda_1 + 25\beta D_B} + e^{\frac{7}{2} \beta \lambda_1 + 25\beta D_B} \right\}; \]

\[Z_0 = \left\{ 2 e^{4\beta D_A} \cosh(2\beta \lambda_1) + 2 e^{8\beta D_A} \cosh(\beta \lambda_1) + 1 \right\}^N. \]

\[\left\{ 2 e^{4\beta D_B} \cosh \left(\frac{7}{2} \beta \lambda_2 \right) + 2 e^{25\beta D_B} \cosh \left(\frac{5}{2} \beta \lambda_2 \right) + 2 e^{25\beta D_B} \cosh \left(\frac{3}{2} \beta \lambda_2 \right) + 2 e^{4\beta D_B} \cosh \left(\frac{1}{2} \beta \lambda_2 \right) \right\}^N. \] (17)

It is possible to calculate the free energy by using the following Equation:

\[G_0 = -k_B T \ln Z_0. \] (18)

\[G_0 = -k_B T \ln \left(2 e^{4\beta D_A} \cosh(2\beta \lambda_1) + 2 e^{8\beta D_A} \cosh(\beta \lambda_1) + 1 \right) - 4 k_B T \ln \left(2 e^{4\beta D_B} \cosh \left(\frac{7}{2} \beta \lambda_2 \right) + 2 e^{25\beta D_B} \cosh \left(\frac{5}{2} \beta \lambda_2 \right) + 2 e^{25\beta D_B} \cosh \left(\frac{3}{2} \beta \lambda_2 \right) + 2 e^{4\beta D_B} \cosh \left(\frac{1}{2} \beta \lambda_2 \right) \right). \] (19)

Equation (13) is used to ensure precise findings. This Equation involves subtracting Eq. (14) from Eq. (2) to obtain the average value of the Hamiltonian.

\[\left\langle \mathcal{H} \cdot \mathcal{H}_0 \right\rangle = \left\langle -I_1 \sum S_1^A S_1^B - I_2 \sum S_1^A S_1^B - D_A \sum A_i^{12} - D_B \sum B_i^{12} + \lambda_1 \sum S_1^A + \lambda_2 \sum S_1^B + D_A \sum S_i^{12} + D_B \sum S_i^{12} \right\rangle. \]

Where \(\beta = \frac{1}{k_B T} : \left\langle S_1^A S_1^B \right\rangle > m_A m_B : \left\langle \sum S_i^A S_i^B \right\rangle = z m_A m_B; \quad m_A = \left\langle S_i^A \right\rangle ; \]

\(m_B = \left\langle S_i^B \right\rangle > \), note that \(m_A \) and \(m_B \) represent the magnetization of sublattices A and B, respectively.

\[\left\langle \mathcal{H} \cdot \mathcal{H}_0 \right\rangle = -N I Z_1 m_A m_B - 4 N I Z_1 m_B^2 + \lambda_1 N m_A + 4 \lambda_2 N m_B. \] (20)

Now, by substituting equations (19) and (20) into Equation (13), we get the free energy of the model in question from the formula:

\[\frac{G}{N} = g = -k_B T \left\{ \ln \left(2 e^{4\beta D_A} \cosh(2\beta \lambda_1) + 2 e^{8\beta D_A} \cosh(\beta \lambda_1) + 1 \right) + 4 \ln \left(2 e^{4\beta D_B} \cosh \left(\frac{7}{2} \beta \lambda_2 \right) + 2 e^{25\beta D_B} \cosh \left(\frac{5}{2} \beta \lambda_2 \right) + 2 e^{25\beta D_B} \cosh \left(\frac{3}{2} \beta \lambda_2 \right) + 2 e^{4\beta D_B} \cosh \left(\frac{1}{2} \beta \lambda_2 \right) \right) \right\}. \]
To calculate the value of λ_1, we use the following relationship:

$$-J_1 Z_1 m_A m_B - 4J_2 Z_1 m_B^2 + \lambda_1 m_A + 4\lambda_2 m_B = 0,$$

(21)

And to calculate the value of λ_2, one has,

$$\frac{\partial g}{\partial \lambda_2} = 0,$$

$$\frac{\partial g}{\partial \lambda_2} = -4k_B T \left[2 \frac{e^{2\beta D_A} \sinh(\beta \lambda_2)}{e^{2\beta D_A} \cosh(\beta \lambda_2) + 2e^{2\beta D_A} \cos(\beta \lambda_2)} \right] - 4J_2 Z_1 m_B \frac{\partial m_B}{\partial \lambda_2} - 8J_2 Z_1 m_B \frac{\partial m_B}{\partial \lambda_2} + 4\lambda_2 \frac{\partial m_B}{\partial \lambda_2} + 4m_B = 0,$$

(22)

III. RESULTS AND DISCUSSION

By altering the crystal field parameters, we examined the relationship between the temperature variation and the sublattice magnetizations of a triangular Blume Capel system with a mixture of spin-2 and spin-$7/2$, as shown in Figs. 2 and 3. The ornamental ferrimagnetic model, which was numerically examined, revealed typical behaviours inside the mean field approximation (MFA). We implement the strategy by utilizing the minimizing free energy function described in Equation (24). The primary method entails studying the phenomenon of superparamagnetism in a decorated ferrimagnetic mixed triangular system. We investigated the impact of the recommended alloy's low temperature on the curves of magnetization and magnetic anisotropies. This study analyzes a particular case within a decorated ferrimagnetic mixed spin triangle system's (m_A, T) and (m_B, T) planes. We have examined the impact of altering the spin crystal fields D_A/J_3 and D_B/J_3 on the system, as seen in Figs. 2 and 3, respectively. More precisely, when the values of decorated atoms D_A/J_3=-0.5, J_1=-0.5, and J_2=-1 are kept constant, the sublattices display different magnetization patterns within the range of (-4.5 $\leq D_A/J_3 < 2.5$), as seen in Fig. 2. It is essential to highlight that sublattice magnetization undergoes a first-order phase transition, achieving zero or a different value [14, 25]. The sublattice magnetization can quickly altered that it does go to zero when the system transitions between two phases, separating the ferrimagnetic or antiferromagnetic phase from the paramagnetic phase. According to Figure 3, at a temperature of 0 Kelvin, the magnetizations of sublattices m_A and m_B are influenced by the decorated crystal field D_A/J_3, with m_A starting from minimal values of -2, -1.5, and -1, while m_B starts from its maximum value of 3.5. The magnetizations are highly influenced by the positive and negative values of D_A/J_3 as the temperature rises. Specifically, when D_A/J_3 takes on values of 2.5, 1.5, 0.5, -0.5, -1.5, and -2.5, the magnetizations consistently approach zero. Given that D_A/J_3=-3.5, -4.5, and J_1=-0.5, J_2=-1, it can be shown that it occurs at a temperature where the magnetizations undergo a discontinuous change. A first-order transition occurs when the magnetization undergoes a sudden change, resulting in the emergence of new phases at (-1.5, 0.5) and (-1, 3.5) for D_A/J_3=-4.5 and D_A/J_3=-4.5, respectively. Similarly, for D_A/J_3=-0.5 and D_A/J_3=0.5, the transition is illustrated in Figs. 2 and 3.

$$M = \frac{m_A + \frac{3}{4}m_B}{4} = \frac{m_A + 3m_B}{4}.$$

(25)
The sublattice magnetizations of a decorated ferrimagnetic mixed-spin triangular system are dependent on the temperature at various values of $D_B/|J_2|$, with a constant value of $D_A/|J_1| = -0.5$ and $J_2 = -1$.

Let us examine Fig. 4, which displays the overall magnetization as a function of the absolute temperature. It shows us significant results that indicate the occurrence of a vital magnetism phenomenon: the compensation temperature. When the system is exposed to changes in the magnetic anisotropy of the sublattices of atom B while keeping the magnetic anisotropy of atom A constant, this phenomenon occurs at absolute zero. We use a decorated triangular lattice ($z = 6$), where $(D_A/|J_1| = 1)$, with $J_1 = -1$, $J_2 = -0.5$, and when increasing temperature and before reaching the paramagnetic phase, the magnetic spins are in the ferromagnetic state. At values of $D_B/|J_1| = -2$, -2.5, -3, with a fixed value of $(D_A/|J_1| = 1)$, the system has one compensation temperature for each value. As the temperature affecting the system increases, it becomes in the paramagnetic phase. The material does not undergo the compensation phenomenon at $(D_B/|J_1| = -0.5, -1, -1.5)$. It is worth noting that these results confirm that the anisotropy of crystalline magnetism plays an essential role in limiting the compensation phenomenon and determining the location of the compensation temperatures. We differ in this interpretation with the results of research [19], which confirm that anisotropy exclusively affects the position of the compensation temperature. At the same time, we agree with the research results [20] that crystalline anisotropy affects the results and appearance of the compensation temperatures; moreover, the results we obtained are distinctive and encouraging and agree with the researchers’ results. [21, 22], respectively. The phenomenon of compensation occurs due to entropy, which refers to the measure of irregularity in the magnetic lattice, as it is observed that the colonies of magnetic spins align with each other in the crystal lattice for the magnetic spins m_A, and to an extent more significant than the alignment of the magnetic spins of the sublattices of atoms B, when the temperature increases, affecting the system as a whole. By changing the magnetic anisotropies alike, the opposite occurs until at a specific value of the magnetic contrasts, it becomes $m_A = -m_B$, and the total spin magnetic system under study is zero, but it is in the ferromagnetic phase. At this temperature, the phenomenon of compensation occurs. As the temperature increases, the system enters the paramagnetic phase and eventually loses magnetism completely. Figure 5 illustrates a single compensation temperature for various $D_A/|J_1|$ values while keeping $D_B/|J_1|$ constant. This observation aligns with the Neel hypothesis, categorizing it as an N-type behaviour [20]. On the other hand, the magnetic characteristics of the suggested system have been investigated for various values of $D_A/|J_1|$, with a fixed value of $D_B/|J_1| = -3$. Nevertheless, the magnetization curves steadily decline, distinguishing the ferrimagnetic phase from the paramagnetic phase. The occurrence is called a second-order phase transition or the Curie temperature [13, 24, 25].
The total magnetizations M of a decorated ferrimagnetic mixed spin triangular system depend on the temperature at various $D_0/[J_1]$ values, with $D_0/[J_2]$ holding constant at -3, $J_1 = -1$, and $J_2 = -0.5$.

Now, let us examine Fig (6), which displays the overall magnetization as a function of the absolute temperature and presents necessary behaviour experienced by the magnetic system under study when an external magnetic field is applied with a range of $(0 \leq H/[J_2] \leq 0.5)$ when $(D_A/[J_1] = 0.5)$ and $(D_B/[J_1] = -3.5)$ with values of $J_1 = -1$ and $J_2 = -0.5$ for a decorated triangular lattice. The system shows distinct behaviour: one compensation point for each $H/[J_1]$ value. It is worth noting that these results are important and worthy of study because they give the impression that the system, under specific conditions of crystal anisotropy, possesses alternating magnetism.

At a fixed value of $D_0/[J_2] = -0.5$, where $J_1 = -0.5$ and $J_2 = -1.0$, Fig. (7) shows how the residual magnetization of the total magnetization changes when the magnetic anisotropy of a decorated triangular lattice, specifically a nodular sublattice, is changed. The overall magnetization diminishes with an increase in the absolute value of $D_A/[J_2]$. Specifically, when $D_A[J_2] > 0$, this reduction influences the variation of the total magnetization in the context of a decorated ferrimagnet under consideration. The residual magnetization is the term used to describe the condition of a decorated ferrimagnet that is magnetized without any external influence, indicating that its magnetization is not zero ($M \neq 0$) [23, 24].

Conversely, Fig. 8 demonstrates that as the ratio $D_B'[J_2]$ grows, the total magnetization undergoes a modest shift initially and then increases when $D_B'[J_2] > 0$. The magnetization rapidly increases until it reaches a saturation point, considerably influenced by the absolute temperature. The authors [6] employed Monte Carlo computations to investigate the magnetic properties of decorated ferrimagnetic mixed spin-3/2 and spin-5/2 Ising systems, juxtaposing our findings. Furthermore, it is worth noting that our present system demonstrates superparamagnetic characteristics when the crystal field $D_B'[J_2] = 0$, which leads to an overall magnetization of zero [9]. Our decorated system generates superparamagnetic phenomena at $D_B'[J_2] = -2.5$, where $J_1 = -0.5$ and $J_2 = -1.0$, as shown in Fig. 8. The observed results closely align with the conclusions drawn by A. Jabar and R. Masrour [9]. Researchers found that increasing the crystal field leads to a rise in overall magnetization for various exchange interaction configurations involving decorating ions within a square lattice and between nodal and decorating ions. The relationship between the external magnetic field H/J_2 and the total magnetization M is illustrated in Fig. 9. The system is a decorated ferrimagnetic mixed spin triangular system with fixed values of $D_A/[J_2] = 8$ and $D_B/[J_2] = -11$. For $(K_T/[J_2] = 2, 2.5, 3, 3.5, 4)$ K, $J_1 = -0.5$ and $J_2 = 1$, respectively. As the magnitude of $H/[J_2]$ grows, the total magnetization initially undergoes modest variations and eventually increases when $H/[J_2] > 0$. The magnetization rapidly increases until it reaches a saturation point, considerably influenced by the absolute temperature. In addition, our current system exhibits superparamagnetic behaviour when the external magnetic field $H/[J_2] = 0$, resulting in a total magnetization of zero.
are held constant. Figure 6 illustrates the compensation temperature associated with each value for which the external magnetic field varies: $0 \leq H/|J| \leq 0.5$. $D_{\alpha}/|J|=0.5$, $D_{\beta}/|J|=0.5$, $D_{\alpha}/|J|=-3.5$, $J_{1} = -1$, $J_{2} = -0.5$. However, we can still compare our findings to the results of M. Boughrara and M. Kerouad in their study on the decorated Ising film with a cubic lattice layout. The system consists of $(1/2,1)$ ions, and Monte Carlo simulation indicates the presence of one or two compensatory temperatures [5]. At a constant value of $D_{\alpha}/|J|= -2.5$, with $J_{1} = -0.5$ and $J_{2} = -1.0$, and for $K_{B}T/|J|= 5$, 5.2, 5.4, 5.6, and $5.8K^{2}$ respectively, the picture in Fig. 7 shows how the overall magnetization is related to the magnetic anisotropy of a decorated sublattice, also known as a nodal sublattice. $D_{\alpha}/|J|$ represents the magnetic anisotropy. The total magnetization decreases as the magnitude of $D_{\alpha}/|J|$ increases. Specifically, when $D_{\alpha}/|J| > 0$, this decrease affects the variation of the total magnetization in the considered decorated ferrimagnet. Residual magnetization occurs when a decorated ferrimagnet becomes magnetized without external influence, resulting in a non-zero magnetization value ($M \neq 0$). [23, 24].

CONFLICT OF INTEREST

Authors declare that they have no conflict of interest.

REFERENCES

