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Abstract—In this study, we treat tunneling similarly to the 

dispersion problem where the wave incident on the barrier is 

partly transmitted and partly reflected. The transport 

potential will be related to conduction using the tight-binding 

model, the steady-state formula, and the Landauer 

relationship. The tunnel was processed using a bridge model. 

We studied the effect of changing the size of the quantum dots 

that make the bridge on the probability of transmission and 

reflection, the effect of changing the number of quantum dots 

on them. The transmission and reflection spectrums were 

compared as functions of the system's energy spectrum. We 

also noticed the effect of the transmission and reflection 

spectrum on the conductivity of the system. The results that 

have been reached, and will contribute significantly to the 

manufacture of nano-devices in the not-too-distant ture. 

Keywords—Transmission, reflection, tight-binding model, 

conductance.  

I. INTRODUCTION 

Louis de Broglie introduced the first crucial concept for 

understanding quantum tunneling. In 1923, De Broglie 

proposed that material particles have a wavelength that 

decreases as momentum increases and vice versa. In 1927 

Friedrich Hund was the beginning to postulate the 

phenomenon of breaking the potential barrier in quantum 

mechanics [1]. Direct quantum tunneling of electrons is 

possible by the standards of quantum mechanics. Classical 

mechanics does not explain the phenomenon of tunneling. 

Quantum tunneling occurs when particles can cross a barrier 

that cannot be crossed according to classical mechanics. 

This barrier is a high-energy area, a vacuum, or an insulator. 
Tunnel formationis is pivotal in many physical, chemical, 

and biological features. Electrons can move from the metal 

surface to the vacuum through a certain barrier. It is possible 

for an electron to pass through a vacuum if there is a high 

enough electric field through a barrier that is not thick 

enough. This emission is called cold emission. 

Semiconductors are one of the materials in which tunneling 

is possible. The tunneling of electrons through a dielectric 

barrier is essential for flash devices. In nanotechnology, 

quantum tunneling is possible in scanning tunneling 

microscopes, transistors, and even touch screens. The 

presence of the assumed particle with energy E inside a well 

with walls of thickness d. This well is one-dimensional and 

has a height of V. Classical mechanics holds that if the value 

of E is less than that of V, then the particle is trapped in the 

well and never emerges. Unlike quantum mechanics if E is 

greater than V, the particle can escape from the potential 

well Even if V is larger than E, the particle can penetrate the 

barrier and escape, but this is possible depending on The 

thickness of the sides of the well and the difference between 

kinetic E and potential energy V.In the electron tunnel in 

solid materials, the potential well is like a metal region 

where the electrons are present in the Fermi energy level, 

and  the barrier in it is a material in which electrons cannot 

spread; that is, there is a Fermi energy gap for the insulating 

material. Although electrons do not propagate infinitely, 

vanishing states can extend from the metal to the tunnel 

barrier. Vanishing states play an essential role in tunnel 

formation. The fading states consist of the complex bundle 

structure of the dielectric, which determines how it decays 

in the dielectric [2,3]. The phenomenon of electron 

tunneling emerges from the wave nature of electrons, so 

when the wave encounters an incident, it is partly reflected 

and partly transmitted. Interface reflection produces 

interface or junction resistance. In this paper treats tunnel as 

similar to dispersion, such that the incident wave is partly 

transmitted over the barrier and partly reflected. The 

transmission probability is related to conduction based on a 

model resulting from the Landauer relationship.[4] 

Brinkmann, Dynes, and Rowell treat the phenomenon of 

electron tunneling using a simple barrier model, as the 

model deals with the scattering of electrons based on the 
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free electron model. According to this approach, 

investigating the gap tunnel between the valence band and 

the conduction band is impossible. We are treated by 

adopting the tight coupling model to form a barrier whose 

gap is between the valence band and the conduction band 

[5]. The models of Bardeen [6] and Slonchevsky [2] consist 

of  two electrodes with a very thick insulator between them, 

so that electrons cannot form quantum tunneling. Tight-

binding approximation takes into account the closest 

interactions and neglects other farther interactions [7,8]. 

Nevertheless, this approximation was a great success [9]. To 

know the basic properties that we obtain through the transfer 

curve in the system [10], as there are many researchers who 

use this method [11-13], and the extent to which this 

approximation agrees with theoretical methods in research. 

This approximation is considered the cornerstone of special 

theories in the field of ballistic electron transfer through 

molecules [14]. The study of the possibility of transferring 

electrons from one side of the junction to the other side, it 

takes into account the probability of transport through 

molecules. The two poles operate as two systems that do not 

depend on each other, but when one is brought close to the 

other, their wave functions overlap, and quantum tunneling 

occurs.  

II. THEORETICAL FORMULATION OF THE MODEL 

The bridge system was proposed to study the relationship 
between transmission and reflectivity and the extent to which 
they are affected by changes in the energy and number of 
quantum dots. This system consists of two poles, the right 
pole , and the left pole, and between them, the quantum dots 
are located or placed, as shown in Figure (1). 

 

Fig.1. represents the bridge system consisting of two electrodes in 
yellow, and the pink circles represent quantum dots. 

 

In tight binding therapy, the system is converted to a 
potential series model, in which the energy levels of each 
molecule and the coupling interaction between each two 
molecules are considered  calculating the eigenvalues of the 
system is done based on the tight coupling model, such as 
[15], 

              (
  

   
)                                                

 

   represents the energy level of the molecule.     is the 

coupling interaction between the nearst neighboring 
molecules. N refers to the total number of molecules. The 
tight connection process of the bridge system is prepared as a 
one-dimensional chain. Any bonding between sites is a 
coupling interaction. Depicting the system as a single 
scattering region simplifies the model with wires. The 
system under study (as in Figure 1) is represented by a time-
independent Hamiltonian (using Dirac- symbols). The 
Hamiltonian includes all the interactions of the subsystems, 
as shown below: 
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The following symbols  ,  ,   ,   , and   indicate the 
donor, acceptor, first strand, and second strand, while N 
represents the total number of molecules. The symbol    is 
the wave vector with i representing the symbols indexes  , 
 ,   ,    , and  .    represents the location of the energy 
level and | ⟩  and ⟨ |  represents ket and bra states, 
respectively. While      is the coupling interaction between 

subsystems   and  . The wave function of the system is 
written as follows  

          | ⟩       | ⟩  ∑   

  

   |  ⟩ 

 ∑     

   

   |   ⟩  ∑     

   

   |   ⟩                                 

      represents the linear expansion coefficients. We 
obtain the equations of motion for       using the time-
dependent Schrödinger equation, 

 

     

  
                                                                            

 

By substituting equations (2) and (3) into (4), we get the 
following: 
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where, 
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here ∑                      , where        is the 
broadening function, while        is the quantum shift 
function, where       . The transmission amplitude, the 
transmission probability , and the reflection probability are 
respectively defined by [16], 
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Calculations of the current passing through the scattering 
region are based on the Landauer transfer formula[17], 

  

  
  

 
∫         

 

  
                                                        

Conductivity calculations are made based on calculations 
of the probability of access for the bridge system of the 
model under study using the following formula [18], 

  
   

 
∫         

      

  
    

 

  

                                                 

where       {                ⁄  }   is the firmi 
disribution function of electrons in the lead        . The 
chemical potential of the lead α is    with        ⁄   and 
        ⁄  where   is the bias voltage. The temperature 
    of the lead  . Here we use     =    =   is fixed at 
       meaning  the leads are in thermal equilibrium.  

  

III. RESULTS AND DISCUSSION  

The values of the factors used in our numerical calculations 

are indicated. The bonding strength of the nearest neighbors 

     is set at        , while the coupling interaction 

between the bridge with the donor and the bridge with the 

acceptor is       . Also, the coupling interaction between 

the donor with the left wire and the acceptor with the right 

wire is     . The Fermi energy level,   , is set at zero in 

equilibrium. The most important of all is the energy level of 

quantum dots, which is equal to      . We note in Fig.2. 

that the probability of penetration will be high in locations 

close to the energies of the eigenvalues of the quantum 

dots, and this is logical due to the coupling interactions in 

the active region with the donor and acceptor, which cause 

a state of resonance between the eigenvalues of the 

quantum dots and the energy spectrum of the system. It can 

be These resonances are called Fano resonances that arise 

due to the interference of coupling interactions, that is, due 

to interference effects. The number of states of the peak 

transmission potential is N-1 due to the decay state that 

occurs for the levels of eigenvalues of quantum dots with 

the energy spectrum of the system. Also,  in Fig. 2, we 

notice that the resonant peaks start from the left side, 

meaning the lower negative values of energy are very 

sharp, and as we move to the right towards the peaks of 

larger negative values, we find that the intensity of the 

resonance peaks decreases and exposure occurs until we 

finally reach a drop. It is so sharp that the system is almost 

continuously open. Fig.3 shows that the reflection 

probability of the electron's wave function works the 

opposite way to the penetration probability function. This is 

because when the eigenvalues of the quantum dots match 

the energy spectrum of the system, the resonant peaks of 

the reflection probability spectrum are the smallest 

possible, while the other values are the largest possible , the 

farther away from the values. Resonance of eigenvalues 

with the energy spectrum of the system. In Fig.3. we notice 

that the resonant peaks start from the left side; that is, the 

lower negative values of energy are blunt and appear as if 

they are continuous. As we move to the right towards the 

peaks of larger negative values, we find that the sharpness 

of the resonant peaks increases and the exposure decreases 

until we reach the end. Ultimately, the decline is so wide 

that the system is almost constantly reversing. 

 
Fig.2. represents the relationship between the transmission probability as a 

function of the system energy spectrum. 

 

By comparing the transmittance spectrum and the reflection 

spectrum as functions of the system's energy spectrum, it 

was found that there is a region in which there is neither the 

probability of reflection nor the probability of penetration 

of the wave function of the electron, and because in our 

quantitative treatment of the case studied we focused on the 

probability of transmission and the probability of reflection 

and did not give much importance to the case of capture. 

Alternatively, the loss of the electron within the system, 

which became clear to us through this comparison that there 

is a specific region or values in which there is no possibility 

of penetration and no possibility of reflection of the 

electron wave due to capture or loss within the system or 

due to the case of destructive interference of the electron 

wave within the system. Thus the possibility of the 

existence of The electrons in this region are almost zero, or 

the probability of implosion and the probability of running 

out are equal, or what is called the superposition state. 

Fig.5. Represents the relationship between conductivity and 

the probability of permeation, as this relationship appears as 

a direct linear relationship. The greater permeability leads 

to the greater conductivity. This is intuitive because when 

the probability of an electron transferring through the 

system increases, the conductivity increases accordingly. 
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Fig.3. represents the relationship between the reflection probability as a 

function of the system energy spectrum. 

 

Fig.4. shows a comparison of the transmission probability spectrum (red 

line)  with the reflection probability spectrum (blue line)  as a function of 

the system energy spectrum. 

 

Fig. 5. The Conductivity as a function of transmission probability. 

Fig.6. represents the relationship between conductivity and 

the probability of reflection. This relationship appears as an 

inverse linear relationship. The greater reflectivity leads to 

the lower the conductivity. This is logical because when the 

probability of reflection of the electron through the system 

increases, the probability of the electron being transmitted 

through the system decreases, and therefore, the 

conductivity decreases accordingly. 

  

Fig. 6. The Conductivity as a function of reflection probability. 

Fig.6. represents the probability of transmission as a 

function of the energy spectrum of the system. We notice 

that the probability of penetration decreases with the 

increase in the number of quantum dots, because the 

probability of tunneling decreases as the number of quantum 

dots increases. In other words, the resistance of the system 

to the transfer of electrons through it increases, and 

therefore , the probability of penetration decreases 

accordingly. 

 

Fig.6. The probability of transmission as a function of the system energy 

spectrum for different numbers of quantum dots (the blue dotted line 

represents 5 quantum dots, the green dotted line represents 10 quantum 

dots, and the red dotted line represents 15 quantum dots). 

Fig.7. represents the probability of reflection as a function 

of the energy spectrum of the system. We notice that the 

probability of reflection increases with the increase in the 

number of quantum dots, because the probability of 

tunneling decreases as the number of quantum dots 

increases. In other words, the system becomes more closed 

for the passage and transfer of an electron, and accordingly, 

the probability increases. 
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Fig.7. The probability of reflection as a function of the system energy 

spectrum for different numbers of quantum dots (the blue dotted line 

represents 5 quantum dots, the green dotted line represents 10 quantum 

dots, and the red dotted line represents 15 quantum dots). 

Fig. 8 indicates the transmittance spectrum as a function of 

the energy spectrum. We notice that the resonant peaks of 

the transmittance spectrum decrease with the increase in the 

ionization energy of the quantum dots, and this can be 

interpreted as the potential barrier represented by the 

quantum dots; as the value of the ionization energy 

increases, this means that the barrier has become more 

Thicker, and therefore the probability of the electron wave 

penetrating through this barrier decreases, and in return, the 

reflectivity spectrum increases with the increase in the 

ionization energy of the quantum dots, which is intuitive, 

meaning that if the probability of penetration decreases, this 

necessarily means an increase in the probability of electron 

wave reflection, as shown in Fig.9. 

 

 

Figure (8) Transmittance probability as a function of the system energy 

spectrum for different values of quantum dot energy(-2,-6,-10, -14, -18, -22 

eV).  

 
Fig.9. Reflection probability as a function of the system energy spectrum 

for different values of quantum dot energy(-2 ,-6,-10, -14, -18, -22 eV).

  

IV. CONCLUSION 

Through the results obtained for the proposed model, we 

conclude that the transmission and energy spctrums are 

significantly affected by the number of quantum dots 

placed between the electrodes as a quantum bridge. We 

notice that the system opens or a resonant state occurs 

during which the electron can form a quantum tunnel 

through the bridge and cross between the poles, taking 

advantage of the state of convergence between the levels 

due to the resonant states that are generated as a result of 

the equality that occurs between the intrinsic values of the 

energies and the energy spectrum of the system. It has been 

observed that the reflectivity spectrum is also affected in 

one way or another by the number of quantum dots, so that 

it increases with the increase in the number of quantum 

dots. This is very logical because the voltage barrier 

becomes thicker with the increase in the number of 

quantum dots between the electrodes, and therefore, the 

probability of the electron wave being reflected increases 

with the increase in quantum dots. We also note that the 

transmittance spectrum is affected by the increase and 

decrease of the ionization energy of the quantum dots, as it 

was observed that as the ionization energy increases, the 

resonant peaks of the transmittance spectrum decrease in 

contrast in the case of the reflection spectrum, the 

relationship is opposite to the transmittance spectrum, so 

that the probability of reflection increases with the increase 

in the ionization energy of the quantum dots. Results that 

have been reached to that consistent with our results in 

terms of behavior [19]. Other researchers have studied 

electronic properties at then nano scale level by studying 

the possibility of transmission through some molecules.[20] 

The results as mentioned earlier give us a clear idea about 

the factors that can increase the probability of electron 

wave reflection and decrease the probability of 

transmission, and vice versa, and how to deal with similar 

bridge systems to design electronic devices at the 

nanoscale. 
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